enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gravitational time dilation - Wikipedia

    en.wikipedia.org/wiki/Gravitational_time_dilation

    Gravitational time dilation is a form of time dilation, an actual difference of elapsed time between two events, as measured by observers situated at varying distances from a gravitating mass. The lower the gravitational potential (the closer the clock is to the source of gravitation), the slower time passes, speeding up as the gravitational ...

  3. Time dilation - Wikipedia

    en.wikipedia.org/wiki/Time_dilation

    Time dilation is the difference in elapsed time as measured by two clocks, either because of a relative velocity between them (special relativity), or a difference in gravitational potential between their locations (general relativity). When unspecified, "time dilation" usually refers to the effect due to velocity.

  4. Two-body problem in general relativity - Wikipedia

    en.wikipedia.org/wiki/Two-body_problem_in...

    In (1+1) dimensions, i.e. a space made of one spatial dimension and one time dimension, the metric for two bodies of equal masses can be solved analytically in terms of the Lambert W function. [11] However, the gravitational energy between the two bodies is exchanged via dilatons rather than gravitons which require three-space in which to ...

  5. Shapiro time delay - Wikipedia

    en.wikipedia.org/wiki/Shapiro_time_delay

    The Shapiro time delay effect, or gravitational time delay effect, is one of the four classic Solar System tests of general relativity. Radar signals passing near a massive object take slightly longer to travel to a target and longer to return than they would if the mass of the object were not present.

  6. Geodesics in general relativity - Wikipedia

    en.wikipedia.org/wiki/Geodesics_in_general...

    For some geodesics in such instances, it is possible for a curve that connects the two events and is nearby to the geodesic to have either a longer or a shorter proper time than the geodesic. [11] For a space-like geodesic through two events, there are always nearby curves which go through the two events that have either a longer or a shorter ...

  7. General relativity - Wikipedia

    en.wikipedia.org/wiki/General_relativity

    This is done in "3+1" formulations, where spacetime is split into three space dimensions and one time dimension. The best-known example is the ADM formalism . [ 174 ] These decompositions show that the spacetime evolution equations of general relativity are well-behaved: solutions always exist , and are uniquely defined, once suitable initial ...

  8. Relativity of simultaneity - Wikipedia

    en.wikipedia.org/wiki/Relativity_of_simultaneity

    The white line represents a plane of simultaneity being moved from the past to the future. In physics, the relativity of simultaneity is the concept that distant simultaneity – whether two spatially separated events occur at the same time – is not absolute, but depends on the observer's reference frame.

  9. Postulates of special relativity - Wikipedia

    en.wikipedia.org/wiki/Postulates_of_special...

    1. First postulate (principle of relativity) The laws of physics take the same form in all inertial frames of reference.. 2. Second postulate (invariance of c) . As measured in any inertial frame of reference, light is always propagated in empty space with a definite velocity c that is independent of the state of motion of the emitting body.