Search results
Results from the WOW.Com Content Network
The number is taken to be 'odd' or 'even' according to whether its numerator is odd or even. Then the formula for the map is exactly the same as when the domain is the integers: an 'even' such rational is divided by 2; an 'odd' such rational is multiplied by 3 and then 1 is added.
Ribenboim defines a triply palindromic prime as a prime p for which: p is a palindromic prime with q digits, where q is a palindromic prime with r digits, where r is also a palindromic prime. [5] For example, p = 10 11310 + 4661664 × 10 5652 + 1, which has q = 11311 digits, and 11311 has r = 5 digits. The first (base-10) triply palindromic ...
Perfect numbers are natural numbers that equal the sum of their positive proper divisors, which are divisors excluding the number itself. So, 6 is a perfect number because the proper divisors of 6 are 1, 2, and 3, and 1 + 2 + 3 = 6. [2] [4]
Smallest base which is not perfect odd power (where generalized Wagstaff numbers can be factored algebraically) for which no generalized Wagstaff primes are known. 100: Centesimal: As 100=10 2, these are two decimal digits. 121: Number expressible with two undecimal digits. 125: Number expressible with three quinary digits. 128: Using as 128=2 7.
An emirp (an anadrome of prime) is a prime number that results in a different prime when its decimal digits are reversed. [1] This definition excludes the related palindromic primes . The term reversible prime is used to mean the same as emirp, but may also, ambiguously, include the palindromic primes.
The director of a prison offers 100 death row prisoners, who are numbered from 1 to 100, a last chance. A room contains a cupboard with 100 drawers. The director randomly puts one prisoner's number in each closed drawer. The prisoners enter the room, one after another. Each prisoner may open and look into 50 drawers in any order.
Word problem from the Līlāvatī (12th century), with its English translation and solution. In science education, a word problem is a mathematical exercise (such as in a textbook, worksheet, or exam) where significant background information on the problem is presented in ordinary language rather than in mathematical notation.
The word problem for an algebra is then to determine, given two expressions (words) involving the generators and operations, whether they represent the same element of the algebra modulo the identities. The word problems for groups and semigroups can be phrased as word problems for algebras. [1]