enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Uncertainty quantification - Wikipedia

    en.wikipedia.org/wiki/Uncertainty_quantification

    Uncertainty quantification (UQ) is the science of quantitative characterization and estimation of uncertainties in both computational and real world applications. It tries to determine how likely certain outcomes are if some aspects of the system are not exactly known.

  3. Uncertainty - Wikipedia

    en.wikipedia.org/wiki/Uncertainty

    There is a difference between uncertainty and variability. Uncertainty is quantified by a probability distribution which depends upon knowledge about the likelihood of what the single, true value of the uncertain quantity is. Variability is quantified by a distribution of frequencies of multiple instances of the quantity, derived from observed ...

  4. Propagation of uncertainty - Wikipedia

    en.wikipedia.org/wiki/Propagation_of_uncertainty

    Any non-linear differentiable function, (,), of two variables, and , can be expanded as + +. If we take the variance on both sides and use the formula [11] for the variance of a linear combination of variables ⁡ (+) = ⁡ + ⁡ + ⁡ (,), then we obtain | | + | | +, where is the standard deviation of the function , is the standard deviation of , is the standard deviation of and = is the ...

  5. Quantification of margins and uncertainties - Wikipedia

    en.wikipedia.org/wiki/Quantification_of_margins...

    Quantification of Margins and Uncertainty (QMU) is a decision support methodology for complex technical decisions. QMU focuses on the identification, characterization, and analysis of performance thresholds and their associated margins for engineering systems that are evaluated under conditions of uncertainty, particularly when portions of those results are generated using computational ...

  6. Experimental uncertainty analysis - Wikipedia

    en.wikipedia.org/wiki/Experimental_uncertainty...

    For example, an experimental uncertainty analysis of an undergraduate physics lab experiment in which a pendulum can estimate the value of the local gravitational acceleration constant g. The relevant equation [ 1 ] for an idealized simple pendulum is, approximately,

  7. Observational error - Wikipedia

    en.wikipedia.org/wiki/Observational_error

    Some errors are not clearly random or systematic such as the uncertainty in the calibration of an instrument. [4] Random errors or statistical errors in measurement lead to measurable values being inconsistent between repeated measurements of a constant attribute or quantity are taken. Random errors create measurement uncertainty.

  8. Foundations of statistics - Wikipedia

    en.wikipedia.org/wiki/Foundations_of_statistics

    Frequentist traveller can account for most of these issues. Certain "problematic" scenarios, like estimating the weight variability of a herd of elephants based on a single measurement (Basu's elephants), exemplify extreme cases that defy statistical estimation. The principle of likelihood has been a contentious area of debate.

  9. Category:Video albums - Wikipedia

    en.wikipedia.org/wiki/Category:Video_albums

    Video albums by individual artists should not be put in this main category. Instead, they should be placed in their own subcategories of Category:Video albums by artist, under the format [[Category:(Artist name) video albums]]. The only video albums in this category should be compilation albums of many artists, or articles about series of video ...