Search results
Results from the WOW.Com Content Network
"Mpemba effect: Why hot water can freeze faster than cold". A possible explanation of the Mpemba Effect; Tyrovolas, Ilias J. (2019). "New Explanation for the Mpemba Effect". The 5th International Electronic Conference on Entropy and Its Applications. p. 2. doi: 10.3390/ecea-5-06658. "The Mpemba effect: Hot Water may Freeze Faster than Cold Water".
List of boiling and freezing information of solvents. ... Freezing point (°C) K f (°C⋅kg/mol) ... Water: 100.00 0.512 0.00
This page contains tables of azeotrope data for various binary and ternary mixtures of solvents. The data include the composition of a mixture by weight (in binary azeotropes, when only one fraction is given, it is the fraction of the second component), the boiling point (b.p.) of a component, the boiling point of a mixture, and the specific gravity of the mixture.
For most non-electrolytes dissolved in water, the van 't Hoff factor is essentially 1. For most ionic compounds dissolved in water, the van 't Hoff factor is equal to the number of discrete ions in a formula unit of the substance. This is true for ideal solutions only, as occasionally ion pairing occurs in solution. At a given instant a small ...
The Leidenfrost effect is a physical phenomenon in which a liquid, close to a solid surface of another body that is significantly hotter than the liquid's boiling point, produces an insulating vapor layer that keeps the liquid from boiling rapidly. Because of this repulsive force, a droplet hovers over the surface, rather than making physical ...
Regular, hexagonal ice is also less dense than liquid water—upon freezing, the density of water decreases by about 9%. [36] [e] These peculiar effects are due to the highly directional bonding of water molecules via the hydrogen bonds: ice and liquid water at low temperature have comparatively low-density, low-energy open lattice structures.
Freezing point depression and boiling point elevation In chemistry , colligative properties are those properties of solutions that depend on the ratio of the number of solute particles to the number of solvent particles in a solution, and not on the nature of the chemical species present. [ 1 ]
In thermodynamics, the ebullioscopic constant K b relates molality b to boiling point elevation. [1] It is the ratio of the latter to the former: = i is the van 't Hoff factor, the number of particles the solute splits into or forms when dissolved. b is the molality of the solution.