Search results
Results from the WOW.Com Content Network
Moisture vapor transmission rate (MVTR), also water vapor transmission rate (WVTR), is a measure of the passage of water vapor through a substance. It is a measure of the permeability for vapor barriers. There are many industries where moisture control is critical.
A vapor barrier on the warm side of the envelope must be combined with a venting path on the cold side of the insulation. This is because no vapor barrier is perfect, and because water may get into the structure, typically from rain. In general, the better the vapor barrier and the drier the conditions, the less venting is required. [7]
Thermodynamic diagrams are diagrams used to represent the thermodynamic states of a material (typically fluid) and the consequences of manipulating this material. For instance, a temperature– entropy diagram ( T–s diagram ) may be used to demonstrate the behavior of a fluid as it is changed by a compressor.
Water vapor can also be indirect evidence supporting the presence of extraterrestrial liquid water in the case of some planetary mass objects. Water vapor, which reacts to temperature changes, is referred to as a 'feedback', because it amplifies the effect of forces that initially cause the warming. Therefore, it is a greenhouse gas. [2]
Membrane distillation (MD) is a thermally driven separation process in which separation is driven by phase change.A hydrophobic membrane presents a barrier for the liquid phase, allowing the vapour phase (e.g. water vapour) to pass through the membrane's pores. [1]
In order to achieve these objectives, all building enclosure systems must include a solid structure, a drainage plane, an air barrier, a thermal barrier, and may include a vapor barrier. Moisture control (e.g. damp proofing) is essential in all climates, but cold climates and hot-humid climates are especially demanding. [8]
In physics and engineering, permeation (also called imbuing) is the penetration of a permeate (a fluid such as a liquid, gas, or vapor) through a solid.It is directly related to the concentration gradient of the permeate, a material's intrinsic permeability, and the materials' mass diffusivity. [1]
The Kelvin equation describes the change in vapour pressure due to a curved liquid–vapor interface, such as the surface of a droplet. The vapor pressure at a convex curved surface is higher than that at a flat surface. The Kelvin equation is dependent upon thermodynamic principles and does not allude to special properties of materials.