enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Conditional independence - Wikipedia

    en.wikipedia.org/wiki/Conditional_independence

    In probability theory, conditional independence describes situations wherein an observation is irrelevant or redundant when evaluating the certainty of a hypothesis. . Conditional independence is usually formulated in terms of conditional probability, as a special case where the probability of the hypothesis given the uninformative observation is equal to the probability

  3. Conditional dependence - Wikipedia

    en.wikipedia.org/wiki/Conditional_Dependence

    Conditional dependence of A and B given C is the logical negation of conditional independence (()). [6] In conditional independence two events (which may be dependent or not) become independent given the occurrence of a third event. [7]

  4. Independence (probability theory) - Wikipedia

    en.wikipedia.org/wiki/Independence_(probability...

    Independence is a fundamental notion in probability theory, as in statistics and the theory of stochastic processes.Two events are independent, statistically independent, or stochastically independent [1] if, informally speaking, the occurrence of one does not affect the probability of occurrence of the other or, equivalently, does not affect the odds.

  5. Conditional probability distribution - Wikipedia

    en.wikipedia.org/wiki/Conditional_probability...

    If the conditional distribution of given is a continuous distribution, then its probability density function is known as the conditional density function. [1] The properties of a conditional distribution, such as the moments , are often referred to by corresponding names such as the conditional mean and conditional variance .

  6. Conditional probability - Wikipedia

    en.wikipedia.org/wiki/Conditional_probability

    The conditional probability can be found by the quotient of the probability of the joint intersection of events A and B, that is, (), the probability at which A and B occur together, and the probability of B: [2] [6] [7]

  7. Naive Bayes classifier - Wikipedia

    en.wikipedia.org/wiki/Naive_Bayes_classifier

    In the statistics literature, naive Bayes models are known under a variety of names, including simple Bayes and independence Bayes. [3] All these names reference the use of Bayes' theorem in the classifier's decision rule, but naive Bayes is not (necessarily) a Bayesian method.

  8. Mutual information - Wikipedia

    en.wikipedia.org/wiki/Mutual_information

    Mutual information is a measure of the inherent dependence expressed in the joint distribution of and relative to the marginal distribution of and under the assumption of independence. Mutual information therefore measures dependence in the following sense: I ⁡ ( X ; Y ) = 0 {\displaystyle \operatorname {I} (X;Y)=0} if and only if X ...

  9. Chain rule (probability) - Wikipedia

    en.wikipedia.org/wiki/Chain_rule_(probability)

    In probability theory, the chain rule [1] (also called the general product rule [2] [3]) describes how to calculate the probability of the intersection of, not necessarily independent, events or the joint distribution of random variables respectively, using conditional probabilities.