Search results
Results from the WOW.Com Content Network
Defining equation (physical chemistry) List of electromagnetism equations; List of equations in classical mechanics; List of equations in gravitation; List of equations in nuclear and particle physics; List of equations in quantum mechanics; List of photonics equations; List of relativistic equations; Table of thermodynamic equations
In physics, physical chemistry and engineering, fluid dynamics is a subdiscipline of fluid mechanics that describes the flow of fluids – liquids and gases. It has several subdisciplines, including aerodynamics (the study of air and other gases in motion) and hydrodynamics (the study of water and other liquids in motion).
The assumptions for the stream function equation are: The flow is incompressible and Newtonian. Coordinates are orthogonal. Flow is 2D: u 3 = ∂u 1 / ∂x 3 = ∂u 2 / ∂x 3 = 0; The first two scale factors of the coordinate system are independent of the last coordinate: ∂h 1 / ∂x 3 = ∂h 2 / ∂x 3 = 0 ...
Elementary flows can be considered the basic building blocks (fundamental solutions, local solutions and solitons) of the different types of equations derived from the Navier-Stokes equations. Some of the flows reflect specific constraints such as incompressible or irrotational flows, or both, as in the case of potential flow , and some of the ...
SIMPLE is an acronym for Semi-Implicit Method for Pressure Linked Equations. The SIMPLE algorithm was developed by Prof. Brian Spalding and his student Suhas Patankar at Imperial College London in the early 1970s. Since then it has been extensively used by many researchers to solve different kinds of fluid flow and heat transfer problems. [1]
Flow around a wing. This incompressible flow satisfies the Euler equations. In fluid dynamics, the Euler equations are a set of partial differential equations governing adiabatic and inviscid flow. They are named after Leonhard Euler. In particular, they correspond to the Navier–Stokes equations with zero viscosity and zero thermal ...
The Eulerian specification of the flow field is a way of looking at fluid motion that focuses on specific locations in the space through which the fluid flows as time passes. [ 1 ] [ 2 ] This can be visualized by sitting on the bank of a river and watching the water pass the fixed location.
The solution of the equations is a flow velocity.It is a vector field—to every point in a fluid, at any moment in a time interval, it gives a vector whose direction and magnitude are those of the velocity of the fluid at that point in space and at that moment in time.