Search results
Results from the WOW.Com Content Network
Radiation dosimetry in the fields of health physics and radiation protection is the measurement, calculation and assessment of the ionizing radiation dose absorbed by an object, usually the human body. This applies both internally, due to ingested or inhaled radioactive substances, or externally due to irradiation by sources of radiation.
Therapeutic doses of radiation therapy are often given and tolerated well even at higher doses to treat discrete, well-defined anatomical structures. The same dose given over a longer period of time is less likely to cause ARS. Dose thresholds are about 50% higher for dose rates of 20 rad/h, and even higher for lower dose rates. [4]
Effective dose is a dose quantity in the International Commission on Radiological Protection (ICRP) system of radiological protection. [1]It is the tissue-weighted sum of the equivalent doses in all specified tissues and organs of the human body and represents the stochastic health risk to the whole body, which is the probability of cancer induction and genetic effects, of low levels of ...
Currently, the ICRP's definition of "equivalent dose" represents an average dose over an organ or tissue, and radiation weighting factors are used instead of quality factors. The phrase dose equivalent is only used for which use Q for calculation, and the following are defined as such by the ICRU and ICRP: ambient dose equivalent
The internal radiation dose due to injection, ingestion or inhalation radioactive substances is known as committed dose.. The ICRP defines Committed effective dose, E(t) as the sum of the products of the committed organ or tissue equivalent doses and the appropriate tissue weighting factors W T, where t is the integration time in years following the intake.
"The calculation of the committed effective dose equivalent (CEDE) begins with the determination of the equivalent dose, H T, to a tissue or organ, T. Where D T,R is the absorbed dose in rads (one gray, an SI unit, equals 100 rads) averaged over the tissue or organ, T, due to radiation type, R, and W R is the radiation
The Total effective dose equivalent (TEDE) is a radiation dosimetry quantity defined by the US Nuclear Regulatory Commission to monitor and control human exposure to ionizing radiation. It is defined differently in the NRC regulations and NRC glossary.
The deterministic effects that can lead to acute radiation syndrome only occur in the case of high doses (> ~10 rad or > 0.1 Gy) and high dose rates (> ~10 rad/h or > 0.1 Gy/h). A model of deterministic risk would require different weighting factors (not yet established) than are used in the calculation of equivalent and effective dose.