Search results
Results from the WOW.Com Content Network
Find all the polygon intersections and insert them into both lists, linking the lists at the intersections. Generate a list of "inbound" intersections – the intersections where the vector from the intersection to the subsequent vertex of subject polygon B begins inside the clipping region.
Python sets are very much like mathematical sets, and support operations like set intersection and union. Python also features a frozenset class for immutable sets, see Collection types. Dictionaries (class dict) are mutable mappings tying keys and corresponding values. Python has special syntax to create dictionaries ({key: value})
The remaining events occur when L sweeps across a crossing between (or intersection of) two line segments s and t. These events may also be predicted from the fact that, just prior to the event, the points of intersection of L with s and t are adjacent in the vertical ordering of the intersection points [clarification needed].
The Shamos–Hoey algorithm [1] applies this principle to solve the line segment intersection detection problem, as stated above, of determining whether or not a set of line segments has an intersection; the Bentley–Ottmann algorithm works by the same principle to list all intersections in logarithmic time per intersection.
There will be an intersection if 0 ≤ t ≤ 1 and 0 ≤ u ≤ 1. The intersection point falls within the first line segment if 0 ≤ t ≤ 1, and it falls within the second line segment if 0 ≤ u ≤ 1. These inequalities can be tested without the need for division, allowing rapid determination of the existence of any line segment ...
Closest pair problem: find the pair of points (from a set of points) with the smallest distance between them; Collision detection algorithms: check for the collision or intersection of two given solids; Cone algorithm: identify surface points; Convex hull algorithms: determining the convex hull of a set of points Graham scan; Quickhull
The intersection points are: (−0.8587, 0.7374, −0.6332), (0.8587, 0.7374, 0.6332). A line–sphere intersection is a simple special case. Like the case of a line and a plane, the intersection of a curve and a surface in general position consists of discrete points, but a curve may be partly or totally contained in a surface.
Once again, the case of the ray passing through a vertex may pose numerical problems in finite precision arithmetics: for two sides adjacent to the same vertex the straightforward computation of the intersection with a ray may not give the vertex in both cases. If the polygon is specified by its vertices, then this problem is eliminated by ...