Search results
Results from the WOW.Com Content Network
[1] [2] The acceleration of a body near the surface of the Earth is due to the combined effects of gravity and centrifugal acceleration from the rotation of the Earth (but the latter is small enough to be negligible for most purposes); the total (the apparent gravity) is about 0.5% greater at the poles than at the Equator. [3] [4]
For example, an experimental uncertainty analysis of an undergraduate physics lab experiment in which a pendulum can estimate the value of the local gravitational acceleration constant g. The relevant equation [1] for an idealized simple pendulum is, approximately,
All bodies accelerate in vacuum at the same rate, regardless of the masses or compositions of the bodies; [1] the measurement and analysis of these rates is known as gravimetry. At a fixed point on the surface, the magnitude of Earth's gravity results from combined effect of gravitation and the centrifugal force from Earth's rotation .
The gravity g′ at depth d is given by g′ = g(1 − d/R) where g is acceleration due to gravity on the surface of the Earth, d is depth and R is the radius of the Earth. If the density decreased linearly with increasing radius from a density ρ 0 at the center to ρ 1 at the surface, then ρ(r) = ρ 0 − (ρ 0 − ρ 1) r / R, and the ...
The value of the constant G was first accurately determined from the results of the Cavendish experiment conducted by the British scientist Henry Cavendish in 1798, although Cavendish did not himself calculate a numerical value for G. [5] This experiment was also the first test of Newton's theory of gravitation between masses in the laboratory.
Schematic diagram of Gouy balance. The Gouy balance, invented by the French physicist Louis Georges Gouy, is a device for measuring the magnetic susceptibility of a sample. . The Gouy balance operates on magnetic torque, by placing the sample on a horizontal arm or beam suspended by a thin fiber, and placing either a permanent magnet or electromagnet on the other end of the arm, there is a ...
The g-force acting on an object under acceleration can be much greater than 1 g, for example, the dragster pictured at top right can exert a horizontal g-force of 5.3 when accelerating. The g-force acting on an object under acceleration may be downwards, for example when cresting a sharp hill on a roller coaster.
Cavendish's result provided additional evidence for a planetary core made of metal, an idea first proposed by Charles Hutton based on his analysis of the 1774 Schiehallion experiment. [18] Cavendish's result of 5.4 g·cm −3 , 23% bigger than Hutton's, is close to 80% of the density of liquid iron , and 80% higher than the density of the Earth ...