enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gravitational constant - Wikipedia

    en.wikipedia.org/wiki/Gravitational_constant

    The accuracy of the measured value of G has increased only modestly since the original Cavendish experiment. [19] G is quite difficult to measure because gravity is much weaker than other fundamental forces, and an experimental apparatus cannot be separated from the gravitational influence of other bodies.

  3. Newton's law of universal gravitation - Wikipedia

    en.wikipedia.org/wiki/Newton's_law_of_universal...

    The value of the constant G was first accurately determined from the results of the Cavendish experiment conducted by the British scientist Henry Cavendish in 1798, although Cavendish did not himself calculate a numerical value for G. [5] This experiment was also the first test of Newton's theory of gravitation between masses in the laboratory.

  4. g-factor (physics) - Wikipedia

    en.wikipedia.org/wiki/G-factor_(physics)

    The spin magnetic moment of a charged, spin-1/2 particle that does not possess any internal structure (a Dirac particle) is given by [1] =, where μ is the spin magnetic moment of the particle, g is the g-factor of the particle, e is the elementary charge, m is the mass of the particle, and S is the spin angular momentum of the particle (with magnitude ħ/2 for Dirac particles).

  5. Theoretical gravity - Wikipedia

    en.wikipedia.org/wiki/Theoretical_gravity

    For the mass attraction effect by itself, the gravitational acceleration at the equator is about 0.18% less than that at the poles due to being located farther from the mass center. When the rotational component is included (as above), the gravity at the equator is about 0.53% less than that at the poles, with gravity at the poles being ...

  6. Anomalous magnetic dipole moment - Wikipedia

    en.wikipedia.org/wiki/Anomalous_magnetic_dipole...

    The E821 Experiment reported the following average value [8] = (). In 2024, the Fermilab collaboration "Muon g−2" doubled the accuracy of this value over the group’s previous measurements from the 2018 data set. The data for the experiment were collected during the 2019–2020 runs.

  7. Tests of general relativity - Wikipedia

    en.wikipedia.org/wiki/Tests_of_general_relativity

    The gravitomagnetic effect in the Cassini radioscience experiment was implicitly postulated by B. Bertotti as having a pure general relativistic origin but its theoretical value has never been tested in the experiment which effectively makes the experimental uncertainty in the measured value of gamma actually larger (by a factor of 10) than 0. ...

  8. Cavendish experiment - Wikipedia

    en.wikipedia.org/wiki/Cavendish_experiment

    After converting to SI units, Cavendish's value for the Earth's density, 5.448 g cm −3, gives G = 6.74 × 10 −11 m 3 kg –1 s −2, [24] which differs by only 1% from the 2014 CODATA value of 6.67408 × 10 −11 m 3 kg −1 s −2. [25] Today, physicists often use units where the gravitational constant takes a different form.

  9. Muon g-2 - Wikipedia

    en.wikipedia.org/wiki/Muon_g-2

    The next stage of muon g − 2 research was conducted at the Brookhaven National Laboratory (BNL) Alternating Gradient Synchrotron; the experiment was known as (BNL) Muon E821 experiment, [17] but it has also been called "muon experiment at BNL" or "(muon) g − 2 at BNL" etc. [7] Brookhaven's Muon g − 2 experiment was constructed from 1989 to 1996 and collected data from 1997 to 2001.