Search results
Results from the WOW.Com Content Network
In practice, this means that alpha particles from all alpha-emitting isotopes across many orders of magnitude of difference in half-life, all nevertheless have about the same decay energy. Formulated in 1911 by Hans Geiger and John Mitchell Nuttall as a relation between the decay constant and the range of alpha particles in air, [ 1 ] in its ...
While the electron has a negative electric charge, the positron has a positive electric charge, and is produced naturally in certain types of radioactive decay. The opposite is also true: the antiparticle of the positron is the electron. Some particles, such as the photon, are their own antiparticle. Otherwise, for each pair of antiparticle ...
Radioactive decay (also known as nuclear decay, radioactivity, radioactive disintegration, or nuclear disintegration) is the process by which an unstable atomic nucleus loses energy by radiation. A material containing unstable nuclei is considered radioactive. Three of the most common types of decay are alpha, beta, and gamma decay.
Alpha decay or α-decay is a type of radioactive decay in which an atomic nucleus emits an alpha particle (helium nucleus). The parent nucleus transforms or "decays" into a daughter product , with a mass number that is reduced by four and an atomic number that is reduced by two.
In contrast to beta decay, the fundamental interactions responsible for alpha decay are a balance between the electromagnetic force and nuclear force. Alpha decay results from the Coulomb repulsion [4] between the alpha particle and the rest of the nucleus, which both have a positive electric charge, but which is kept in check by the nuclear force.
In particle physics, particle decay is the spontaneous process of one unstable subatomic particle transforming into multiple other particles. The particles created in this process (the final state ) must each be less massive than the original, although the total mass of the system must be conserved.
This was known as the τ–θ puzzle. It was resolved only by the discovery of parity violation in weak interactions (most importantly, by the Wu experiment ). Since the mesons decay through weak interactions, parity is not conserved, and the two decays are actually decays of the same particle, [ 7 ] now called the
"current": AC (for "alternating current"); less commonly, DC (for "direct current"); or even I (the symbol used in physics and electronics) Roman numerals: for example the word "six" in the clue might be used to indicate the letters VI; The name of a chemical element may be used to signify its symbol; e.g., W for tungsten