Search results
Results from the WOW.Com Content Network
For applications in control theory, according to Levine (1996, p. 158), rise time is defined as "the time required for the response to rise from x% to y% of its final value", with 0% to 100% rise time common for underdamped second order systems, 5% to 95% for critically damped and 10% to 90% for overdamped ones. [6]
The step response can be described by the following quantities related to its time behavior, overshoot; rise time; settling time; ringing; In the case of linear dynamic systems, much can be inferred about the system from these characteristics. Below the step response of a simple two-pole amplifier is presented, and some of these terms are ...
Transient response can be quantified with the following properties. Rise time Rise time refers to the time required for a signal to change from a specified low value to a specified high value. Typically, these values are 10% and 90% of the step height. Overshoot Overshoot is when a signal or function exceeds its target.
Settling time depends on the system response and natural frequency. The settling time for a second order , underdamped system responding to a step response can be approximated if the damping ratio ζ ≪ 1 {\displaystyle \zeta \ll 1} by T s = − ln ( tolerance fraction ) damping ratio × natural freq {\displaystyle T_{s}=-{\frac {\ln ...
However, the output is not ideal because of the frequency response of the amplifier, and ringing occurs. Several figures of merit to describe the adequacy of step response are in common use. One is the rise time of the output, which ideally would be short. A second is the time for the output to lock into its final value, which again should be ...
In an increasing system, the time constant is the time for the system's step response to reach 1 − 1 / e ≈ 63.2% of its final (asymptotic) value (say from a step increase). In radioactive decay the time constant is related to the decay constant ( λ ), and it represents both the mean lifetime of a decaying system (such as an atom) before it ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
A circuit is designed to minimize rise time while containing distortion of the signal within acceptable limits. Overshoot represents a distortion of the signal. In circuit design, the goals of minimizing overshoot and of decreasing circuit rise time can conflict. The magnitude of overshoot depends on time through a phenomenon called "damping."