Search results
Results from the WOW.Com Content Network
Centrifugal force is a fictitious force in Newtonian mechanics (also called an "inertial" or "pseudo" force) that appears to act on all objects when viewed in a rotating frame of reference. It appears to be directed radially away from the axis of rotation of the frame.
For Huygens and Newton centrifugal force was the result of a curvilinear motion of a body; hence it was located in nature, in the object of investigation. According to a more recent formulation of classical mechanics, centrifugal force depends on the choice of how phenomena can be conveniently represented.
A centripetal force (from Latin centrum, "center" and petere, "to seek" [1]) is a force that makes a body follow a curved path.The direction of the centripetal force is always orthogonal to the motion of the body and towards the fixed point of the instantaneous center of curvature of the path.
The centripetal force on the car is now also transferred to the suitcase and the situation of Newton's third law comes into play, with the centripetal force as the action part and with the so-called reactive centrifugal force as the reaction part. The reactive centrifugal force is also due to the inertia of the suitcase. Now however the inertia ...
Thus, the "gravity" force felt by an object is the centrifugal force perceived in the rotating frame of reference as pointing "downwards" towards the hull. By Newton's Third Law , the value of little g (the perceived "downward" acceleration) is equal in magnitude and opposite in direction to the centripetal acceleration.
In classical mechanics, centrifugal force is an outward force associated with rotation.Centrifugal force is one of several so-called pseudo-forces (also known as inertial forces), so named because, unlike real forces, they do not originate in interactions with other bodies situated in the environment of the particle upon which they act.
From the necessary centrifugal force, one can determine one's speed of rotation; for example, if the calculated tension is greater than measured, one is rotating in the sense opposite to the spheres, and the larger the discrepancy the faster this rotation. The tension in the wire is the required centripetal force to sustain the rotation.
The "reactive centrifugal force" discussed in this article is not the same thing as the centrifugal pseudoforce, which is usually what is meant by the term "centrifugal force". Reactive centrifugal force, being one-half of the reaction pair together with centripetal force, is a concept which applies in any reference frame.