Search results
Results from the WOW.Com Content Network
The Hurwitz stability matrix is a crucial part of control theory. A system is stable if its control matrix is a Hurwitz matrix. The negative real components of the eigenvalues of the matrix represent negative feedback. Similarly, a system is inherently unstable if any of the eigenvalues have positive real components, representing positive feedback.
If all eigenvalues of J are real or complex numbers with absolute value strictly less than 1 then a is a stable fixed point; if at least one of them has absolute value strictly greater than 1 then a is unstable. Just as for n =1, the case of the largest absolute value being 1 needs to be investigated further — the Jacobian matrix test is ...
The exponential of a Metzler (or quasipositive) matrix is a nonnegative matrix because of the corresponding property for the exponential of a nonnegative matrix. This is natural, once one observes that the generator matrices of continuous-time Markov chains are always Metzler matrices, and that probability distributions are always non-negative.
Computing the square root of 2 (which is roughly 1.41421) is a well-posed problem. Many algorithms solve this problem by starting with an initial approximation x 0 to , for instance x 0 = 1.4, and then computing improved guesses x 1, x 2, etc. One such method is the famous Babylonian method, which is given by x k+1 = (x k + 2/x k)/2.
A linear system is BIBO stable if its characteristic polynomial is stable. The denominator is required to be Hurwitz stable if the system is in continuous-time and Schur stable if it is in discrete-time. In practice, stability is determined by applying any one of several stability criteria.
In the control system theory, the Routh–Hurwitz stability criterion is a mathematical test that is a necessary and sufficient condition for the stability of a linear time-invariant (LTI) dynamical system or control system. A stable system is one whose output signal is bounded; the position, velocity or energy do not increase to infinity as ...
A Lyapunov function for an autonomous dynamical system {: ˙ = ()with an equilibrium point at = is a scalar function: that is continuous, has continuous first derivatives, is strictly positive for , and for which the time derivative ˙ = is non positive (these conditions are required on some region containing the origin).
ISS unified the Lyapunov and input-output stability theories and revolutionized our view on stabilization of nonlinear systems, design of robust nonlinear observers, stability of nonlinear interconnected control systems, nonlinear detectability theory, and supervisory adaptive control. This made ISS the dominating stability paradigm in ...