enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hexahedron - Wikipedia

    en.wikipedia.org/wiki/Hexahedron

    Additional non-convex hexahedra exist, with their number depending on how polyhedra are defined. Two polyhedra are "topologically distinct" if they have intrinsically different arrangements of faces and vertices, such that it is impossible to distort one into the other simply by changing the lengths of edges or the angles between edges or faces.

  3. List of uniform polyhedra - Wikipedia

    en.wikipedia.org/wiki/List_of_uniform_polyhedra

    Kaleido software indexing: K01–K80 (K n = U n–5 for n = 6 to 80) (prisms 1–5, Tetrahedron etc. 6+) Magnus Wenninger Polyhedron Models: W001-W119 1–18: 5 convex regular and 13 convex semiregular; 20–22, 41: 4 non-convex regular; 19–66: Special 48 stellations/compounds (Nonregulars not given on this list)

  4. Hexagon - Wikipedia

    en.wikipedia.org/wiki/Hexagon

    A regular skew hexagon seen as edges (black) of a triangular antiprism, symmetry D 3d, [2 +,6], (2*3), order 12. A skew hexagon is a skew polygon with six vertices and edges but not existing on the same plane. The interior of such a hexagon is not generally defined. A skew zig-zag hexagon has vertices alternating between two parallel planes.

  5. Goldberg polyhedron - Wikipedia

    en.wikipedia.org/wiki/Goldberg_polyhedron

    The number of vertices, edges, and faces of GP(m,n) can be computed from m and n, with T = m 2 + mn + n 2 = (m + n) 2 − mn, depending on one of three symmetry systems: [1] The number of non-hexagonal faces can be determined using the Euler characteristic, as demonstrated here.

  6. Platonic solid - Wikipedia

    en.wikipedia.org/wiki/Platonic_solid

    The Platonic solids have been known since antiquity. It has been suggested that certain carved stone balls created by the late Neolithic people of Scotland represent these shapes; however, these balls have rounded knobs rather than being polyhedral, the numbers of knobs frequently differed from the numbers of vertices of the Platonic solids, there is no ball whose knobs match the 20 vertices ...

  7. Heptagon - Wikipedia

    en.wikipedia.org/wiki/Heptagon

    In geometry, a heptagon or septagon is a seven-sided polygon or 7-gon.. The heptagon is sometimes referred to as the septagon, using "sept-" (an elision of septua-, a Latin-derived numerical prefix, rather than hepta-, a Greek-derived numerical prefix; both are cognate) together with the Greek suffix "-agon" meaning angle.

  8. Tetradecahedron - Wikipedia

    en.wikipedia.org/wiki/Tetradecahedron

    There are 1,496,225,352 topologically distinct convex tetradecahedra, excluding mirror images, having at least 9 vertices. [8] ( Two polyhedra are "topologically distinct" if they have intrinsically different arrangements of faces and vertices, such that it is impossible to distort one into the other simply by changing the lengths of edges or the angles between edges or faces.)

  9. Truncated cuboctahedron - Wikipedia

    en.wikipedia.org/wiki/Truncated_cuboctahedron

    The rest of its space can be dissected into 6 square cupolas below the octagons, and 8 triangular cupolas below the hexagons. A dissected truncated cuboctahedron can create a genus 5, 7, or 11 Stewart toroid by removing the central rhombicuboctahedron, and either the 6 square cupolas, the 8 triangular cupolas, or the 12 cubes respectively. Many ...