enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Disjoint sets - Wikipedia

    en.wikipedia.org/wiki/Disjoint_sets

    Two disjoint sets. In set theory in mathematics and formal logic, two sets are said to be disjoint sets if they have no element in common. Equivalently, two disjoint sets are sets whose intersection is the empty set. [1] For example, {1, 2, 3} and {4, 5, 6} are disjoint sets, while {1, 2, 3} and {3, 4, 5} are not disjoint. A collection of two ...

  3. Disjoint union - Wikipedia

    en.wikipedia.org/wiki/Disjoint_union

    In mathematics, the disjoint union (or discriminated union) of the sets A and B is the set formed from the elements of A and B labelled (indexed) with the name of the set from which they come. So, an element belonging to both A and B appears twice in the disjoint union, with two different labels.

  4. Pairwise - Wikipedia

    en.wikipedia.org/wiki/Pairwise

    Pairwise generally means "occurring in pairs" or "two at a time." Pairwise may also refer to: Pairwise disjoint; Pairwise independence of random variables; Pairwise comparison, the process of comparing two entities to determine which is preferred; All-pairs testing, also known as pairwise testing, a software testing method.

  5. Bell number - Wikipedia

    en.wikipedia.org/wiki/Bell_number

    In combinatorial mathematics, ... is defined as a family of nonempty, pairwise disjoint subsets of whose union is . For example, = because the 3 ...

  6. Axiom of choice - Wikipedia

    en.wikipedia.org/wiki/Axiom_of_choice

    The set of those translates partitions the circle into a countable collection of pairwise disjoint sets, which are all pairwise congruent. Since X is not measurable for any rotation-invariant countably additive finite measure on S , finding an algorithm to form a set from selecting a point in each orbit requires that one add the axiom of choice ...

  7. Noncrossing partition - Wikipedia

    en.wikipedia.org/wiki/Noncrossing_partition

    A partition of a set S is a set of non-empty, pairwise disjoint subsets of S, called "parts" or "blocks", whose union is all of S.Consider a finite set that is linearly ordered, or (equivalently, for purposes of this definition) arranged in a cyclic order like the vertices of a regular n-gon.

  8. Sunflower (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Sunflower_(mathematics)

    Then consider ,, …, to be a maximal collection of pairwise disjoint sets (that is, is the empty set unless =, and every set in intersects with some ). Because we assumed that W {\displaystyle W} had no sunflower of size r {\displaystyle r} , and a collection of pairwise disjoint sets is a sunflower, t < r {\displaystyle t<r} .

  9. Partition of a set - Wikipedia

    en.wikipedia.org/wiki/Partition_of_a_set

    To define the join, form a relation on the blocks A of α and the blocks B of ρ by A ~ B if A and B are not disjoint. Then α ∨ ρ {\displaystyle \alpha \vee \rho } is the partition in which each block C is the union of a family of blocks connected by this relation.