Search results
Results from the WOW.Com Content Network
In a universe with zero curvature, the local geometry is flat. The most familiar such global structure is that of Euclidean space, which is infinite in extent. Flat universes that are finite in extent include the torus and Klein bottle. Moreover, in three dimensions, there are 10 finite closed flat 3-manifolds, of which 6 are orientable and 4 ...
The ΛCDM model assumes that the shape of the universe is of zero curvature (is flat) and has an undetermined topology. In 2019, interpretation of Planck data suggested that the curvature of the universe might be positive (often called "closed"), which would contradict the ΛCDM model.
If k = −1, then (loosely speaking) one can say that i · a is the radius of curvature of the universe. a is the scale factor which is taken to be 1 at the present time. k is the current spatial curvature (when a = 1). If the shape of the universe is hyperspherical and R t is the radius of curvature (R 0 at the present), then a = R t / R 0
Possible shapes of the universe. In terms of the curvature of space-time and the shape of the universe, it can theoretically be closed (positive curvature, or space-time folding in itself as though on a four-dimensional sphere's surface), open (negative curvature, with space-time folding outward), or flat (zero curvature, like the surface of a ...
The Friedmann–Lemaître–Robertson–Walker metric is a curved metric which forms the current foundation for the description of the expansion of the universe and the shape of the universe. [citation needed] The fact that photons have no mass yet are distorted by gravity, means that the explanation would have to be something besides photonic ...
The Milne universe is a special case of a more general Friedmann–Lemaître–Robertson–Walker model (FLRW). The Milne solution can be obtained from the more generic FLRW model by demanding that the energy density, pressure and cosmological constant all equal zero and the spatial curvature is negative.
In the case of the flatness problem, the parameter which appears fine-tuned is the density of matter and energy in the universe. This value affects the curvature of space-time, with a very specific critical value being required for a flat universe. The current density of the universe is observed to be very close to this critical value.
In other words, the Gaussian curvature of a surface does not change if one bends the surface without stretching it. Thus the Gaussian curvature is an intrinsic invariant of a surface. Gauss presented the theorem in this manner (translated from Latin): Thus the formula of the preceding article leads itself to the remarkable Theorem.