enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Exact differential - Wikipedia

    en.wikipedia.org/wiki/Exact_differential

    In multivariate calculus, a differential or differential form is said to be exact or perfect (exact differential), as contrasted with an inexact differential, if it is equal to the general differential for some differentiable function in an orthogonal coordinate system (hence is a multivariable function whose variables are independent, as they are always expected to be when treated in ...

  3. Exact differential equation - Wikipedia

    en.wikipedia.org/wiki/Exact_differential_equation

    Given a simply connected and open subset D of and two functions I and J which are continuous on D, an implicit first-order ordinary differential equation of the form (,) + (,) =,is called an exact differential equation if there exists a continuously differentiable function F, called the potential function, [1] [2] so that

  4. Closed and exact differential forms - Wikipedia

    en.wikipedia.org/wiki/Closed_and_exact...

    In mathematics, especially vector calculus and differential topology, a closed form is a differential form α whose exterior derivative is zero (dα = 0), and an exact form is a differential form, α, that is the exterior derivative of another differential form β. Thus, an exact form is in the image of d, and a closed form is in the kernel of ...

  5. Differential of a function - Wikipedia

    en.wikipedia.org/wiki/Differential_of_a_function

    The differential was first introduced via an intuitive or heuristic definition by Isaac Newton and furthered by Gottfried Leibniz, who thought of the differential dy as an infinitely small (or infinitesimal) change in the value y of the function, corresponding to an infinitely small change dx in the function's argument x.

  6. Numerical methods for ordinary differential equations

    en.wikipedia.org/wiki/Numerical_methods_for...

    where is a function : [,), and the initial condition is a given vector. First-order means that only the first derivative of y appears in the equation, and higher derivatives are absent. Without loss of generality to higher-order systems, we restrict ourselves to first-order differential equations, because a higher-order ODE can be converted ...

  7. Poincaré lemma - Wikipedia

    en.wikipedia.org/wiki/Poincaré_lemma

    In mathematics, the Poincaré lemma gives a sufficient condition for a closed differential form to be exact (while an exact form is necessarily closed). Precisely, it states that every closed p-form on an open ball in R n is exact for p with 1 ≤ p ≤ n. [1] The lemma was introduced by Henri Poincaré in 1886. [2] [3]

  8. Notation for differentiation - Wikipedia

    en.wikipedia.org/wiki/Notation_for_differentiation

    If location y is a function of t, then ˙ denotes velocity [13] and ¨ denotes acceleration. [14] This notation is popular in physics and mathematical physics. It also appears in areas of mathematics connected with physics such as differential equations.

  9. Conservative vector field - Wikipedia

    en.wikipedia.org/wiki/Conservative_vector_field

    = in the line integral is an exact differential for an orthogonal coordinate system (e.g., Cartesian, cylindrical, or spherical coordinates). Since the gradient theorem is applicable for a differentiable path, the path independence of a conservative vector field over piecewise-differential curves is also proved by the proof per differentiable ...