Search results
Results from the WOW.Com Content Network
The concept of the regulation of the internal environment was described by French physiologist Claude Bernard in 1849, and the word homeostasis was coined by Walter Bradford Cannon in 1926. [10] [11] In 1932, Joseph Barcroft a British physiologist, was the first to say that higher brain function required the most stable internal environment.
Allostasis emphasizes that regulation must be efficient, whereas homeostasis makes no reference to efficiency. Prediction requires the brain to: (i) collect information across all spatial and temporal scales; (ii) analyze, integrate, and decide what will be needed; (iii) exert feedforward control of all parameters.
Blood sugar regulation is the process by which the levels of blood sugar, the common name for glucose dissolved in blood plasma, are maintained by the body within a narrow range. The regulation of glucose levels through Homeostasis. This tight regulation is referred to as glucose homeostasis.
Allostasis is the system which helps to achieve homeostasis. [18] Homeostasis is the regulation of physiological processes, whereby systems in the body respond to the state of the body and to the external environment. [18] The relationship between allostasis and allostatic load is the concept of anticipation.
Fluid balance is an aspect of the homeostasis of organisms in which the amount of water in the organism needs to be controlled, via osmoregulation and behavior, such that the concentrations of electrolytes (salts in solution) in the various body fluids are kept within healthy ranges.
Energy intake is measured by the amount of calories consumed from food and fluids. [1] Energy intake is modulated by hunger, which is primarily regulated by the hypothalamus, [1] and choice, which is determined by the sets of brain structures that are responsible for stimulus control (i.e., operant conditioning and classical conditioning) and cognitive control of eating behavior.
Acid–base homeostasis is the homeostatic regulation of the pH of the body's extracellular fluid (ECF). [1] The proper balance between the acids and bases (i.e. the pH) in the ECF is crucial for the normal physiology of the body—and for cellular metabolism . [ 1 ]
Regulation of renal blood flow is important to maintaining a stable glomerular filtration rate (GFR) despite changes in systemic blood pressure (within about 80-180 mmHg). In a mechanism called tubuloglomerular feedback , the kidney changes its own blood flow in response to changes in sodium concentration.