Search results
Results from the WOW.Com Content Network
Orthographic projection (also orthogonal projection and analemma) [a] is a means of representing three-dimensional objects in two dimensions.Orthographic projection is a form of parallel projection in which all the projection lines are orthogonal to the projection plane, [2] resulting in every plane of the scene appearing in affine transformation on the viewing surface.
An auxiliary view or pictorial, is an orthographic view that is projected into any plane other than one of the six primary views. [3] These views are typically used when an object has a surface in an oblique plane. By projecting into a plane parallel with the oblique surface, the true size and shape of the surface are shown.
Axonometric projection is further subdivided into three categories: isometric projection, dimetric projection, and trimetric projection, depending on the exact angle at which the view deviates from the orthogonal. [3] [4] A typical characteristic of orthographic pictorials is that one axis of space is usually displayed as vertical.
The term orthographic is sometimes reserved specifically for depictions of objects where the principal axes or planes of the object are also parallel with the projection plane (or the paper on which the orthographic or parallel projection is drawn). However, the term primary view is also used.
The line segments AB and CD are orthogonal to each other. In mathematics, orthogonality is the generalization of the geometric notion of perpendicularity.Whereas perpendicular is typically followed by to when relating two lines to one another (e.g., "line A is perpendicular to line B"), [1] orthogonal is commonly used without to (e.g., "orthogonal lines A and B").
In both oblique projection and orthographic projection, parallel lines of the source object produce parallel lines in the projected image. The projectors in oblique projection intersect the projection plane at an oblique angle to produce the projected image, as opposed to the perpendicular angle used in orthographic projection.
Orthographic projection in cartography has been used since antiquity. Like the stereographic projection and gnomonic projection, orthographic projection is a perspective projection in which the sphere is projected onto a tangent plane or secant plane. The point of perspective for the orthographic projection is at infinite distance.
Thus, the vector is parallel to , the vector is orthogonal to , and = +. The projection of a onto b can be decomposed into a direction and a scalar magnitude by writing it as a 1 = a 1 b ^ {\displaystyle \mathbf {a} _{1}=a_{1}\mathbf {\hat {b}} } where a 1 {\displaystyle a_{1}} is a scalar, called the scalar projection of a onto b , and b̂ is ...