Search results
Results from the WOW.Com Content Network
Le Chatelier–Braun principle analyzes the qualitative behaviour of a thermodynamic system when a particular one of its externally controlled state variables, say , changes by an amount , the 'driving change', causing a change , the 'response of prime interest', in its conjugate state variable , all other externally controlled state variables remaining constant.
where ln denotes the natural logarithm, is the thermodynamic equilibrium constant, and R is the ideal gas constant.This equation is exact at any one temperature and all pressures, derived from the requirement that the Gibbs free energy of reaction be stationary in a state of chemical equilibrium.
In a chemical reaction, chemical equilibrium is the state in which both the reactants and products are present in concentrations which have no further tendency to change with time, so that there is no observable change in the properties of the system. [1] This state results when the forward reaction proceeds at the same rate as the reverse ...
In 1884, Jacobus van 't Hoff proposed the Van 't Hoff equation describing the temperature dependence of the equilibrium constant for a reversible reaction: = where ΔU is the change in internal energy, K is the equilibrium constant of the reaction, R is the universal gas constant, and T is thermodynamic temperature.
The equilibrium constant for a full redox reaction can be obtained from the standard redox potentials of the constituent half-reactions. At equilibrium the potential for the two half-reactions must be equal to each other and, of course, the number of electrons exchanged must be the same in the two half reactions. [32]
Knowing the analytical concentrations of reactants initially in the reaction vessel and in the burette, all analytical concentrations can be derived as a function of the volume (or mass) of titrant added. The equilibrium constants may be derived by best-fitting of the experimental data with a chemical model of the equilibrium system.
In chemistry, the common-ion effect refers to the decrease in solubility of an ionic precipitate by the addition to the solution of a soluble compound with an ion in common with the precipitate. [1] This behaviour is a consequence of Le Chatelier's principle for the equilibrium reaction of the ionic association / dissociation .
the reaction results in the change of the number of moles of gas in the system. In the example reaction above, the number of moles changes from 4 to 2, and an increase of pressure by system compression will result in appreciably more ammonia in the equilibrium mixture. In the general case of a gaseous reaction: α A + β B ⇌ σ S + τ T