Search results
Results from the WOW.Com Content Network
The specific heat of the human body calculated from the measured values of individual tissues is 2.98 kJ · kg−1 · °C−1. This is 17% lower than the earlier wider used one based on non measured values of 3.47 kJ · kg−1· °C−1.
It is also known as the strength-to-weight ratio or strength/weight ratio or strength-to-mass ratio. In fiber or textile applications, tenacity is the usual measure of specific strength. The SI unit for specific strength is Pa ⋅ m 3 / kg , or N ⋅m/kg, which is dimensionally equivalent to m 2 /s 2 , though the latter form is rarely used.
(near r.t.) 535 kg/m 3: LNG (at 20 °C) 0.534 g/cm 3: CRC (near r.t.) 0.534 g/cm 3: 4 Be beryllium; use: 1.85 g/cm 3: WEL (near r.t.) 1848 kg/m 3: LNG (at 20 °C) 1.8477 g/cm 3: CRC (near r.t.) 1.85 g/cm 3: 5 B boron; use: 2.34 g/cm 3: WEL (near r.t.) 2460 kg/m 3: LNG (at r.t.) 2.34 g/cm 3: CRC (near r.t.) 2.34 g/cm 3: 6 C carbon (graphite) use ...
The specific weight, also known as the unit weight (symbol γ, the Greek letter gamma), is a volume-specific quantity defined as the weight W divided by the volume V of a material: = / Equivalently, it may also be formulated as the product of density, ρ, and gravity acceleration, g: = Its unit of measurement in the International System of Units (SI) is newton per cubic metre (N/m 3), with ...
A36 steel has a Poisson's ratio of 0.26 and a shear modulus of 11,500 ksi (79.3 GPa). [7] A36 steel in plates, bars, and shapes with a thickness of less than 8 inches (203 millimeters) has a minimum yield strength of 36 ksi (250 MPa) and ultimate tensile strength of 58–80 ksi (400–550 MPa).
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The search engine that helps you find exactly what you're looking for. Find the most relevant information, video, images, and answers from all across the Web.
Consider a long, thin wire of charge and length .To calculate the average linear charge density, ¯, of this one dimensional object, we can simply divide the total charge, , by the total length, : ¯ = If we describe the wire as having a varying charge (one that varies as a function of position along the length of the wire, ), we can write: = Each infinitesimal unit of charge, , is equal to ...