enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Binomial distribution - Wikipedia

    en.wikipedia.org/wiki/Binomial_distribution

    In probability theory and statistics, the binomial distribution with parameters n and p is the discrete probability distribution of the number of successes in a sequence of n independent experiments, each asking a yes–no question, and each with its own Boolean-valued outcome: success (with probability p) or failure (with probability q = 1 − p).

  3. (a,b,0) class of distributions - Wikipedia

    en.wikipedia.org/wiki/(a,b,0)_class_of_distributions

    In probability theory, a member of the (a, b, 0) class of distributions is any distribution of a discrete random variable N whose values are nonnegative integers whose probability mass function satisfies the recurrence formula = +, =,,, …

  4. Binomial test - Wikipedia

    en.wikipedia.org/wiki/Binomial_test

    There are two methods to define the two-tailed p-value. One method is to sum the probability that the total deviation in numbers of events in either direction from the expected value is either more than or less than the expected value. The probability of that occurring in our example is 0.0437. The second method involves computing the ...

  5. Poisson binomial distribution - Wikipedia

    en.wikipedia.org/wiki/Poisson_binomial_distribution

    A Poisson binomial distribution can be approximated by a binomial distribution where , the mean of the , is the success probability of . The variances of P B {\displaystyle PB} and B {\displaystyle B} are related by the formula

  6. Expected value - Wikipedia

    en.wikipedia.org/wiki/Expected_value

    Any definition of expected value may be extended to define an expected value of a multidimensional random variable, i.e. a random vector X. It is defined component by component, as E[X] i = E[X i]. Similarly, one may define the expected value of a random matrix X with components X ij by E[X] ij = E[X ij].

  7. Normal distribution - Wikipedia

    en.wikipedia.org/wiki/Normal_distribution

    The moment generating function of a real random variable is the expected value of , as a function of the real parameter . For a normal distribution with density f {\textstyle f} , mean μ {\textstyle \mu } and variance σ 2 {\textstyle \sigma ^{2}} , the moment generating function exists and is equal to

  8. Are NFL quarterbacks worth their high salaries? - AOL

    www.aol.com/sports/nfl-quarterbacks-worth-high...

    The first NFL player to make an average annual value of $60 million, Dak Prescott is the Dallas Cowboys' franchise quarterback. Prescott was the 2016 Offensive Rookie of the Year for his ...

  9. Law of the unconscious statistician - Wikipedia

    en.wikipedia.org/wiki/Law_of_the_unconscious...

    In probability theory and statistics, the law of the unconscious statistician, or LOTUS, is a theorem which expresses the expected value of a function g(X) of a random variable X in terms of g and the probability distribution of X. The form of the law depends on the type of random variable X in question.