Search results
Results from the WOW.Com Content Network
Peak-to-peak amplitude (abbreviated p–p or PtP or PtoP) is the change between peak (highest amplitude value) and trough (lowest amplitude value, which can be negative). With appropriate circuitry, peak-to-peak amplitudes of electric oscillations can be measured by meters or by viewing the waveform on an oscilloscope .
If F is the only force acting on the system, the system is called a simple harmonic oscillator, and it undergoes simple harmonic motion: sinusoidal oscillations about the equilibrium point, with a constant amplitude and a constant frequency (which does not depend on the amplitude).
The logarithmic decrement is defined as the natural log of the ratio of the amplitudes of any two successive peaks: = (+) where x(t) is the overshoot (amplitude - final value) at time t and x(t + nT) is the overshoot of the peak n periods away, where n is any integer number of successive, positive peaks.
It is defined as the peak energy stored in the circuit divided by the average energy dissipated in it per radian at resonance. Low- Q circuits are therefore damped and lossy and high- Q circuits are underdamped and prone to amplitude extremes if driven at the resonant frequency.
Simple relaxation oscillator made by feeding back an inverting Schmitt trigger's output voltage through a RC network to its input.. An electronic oscillator is an electronic circuit that produces a periodic, oscillating or alternating current (AC) signal, usually a sine wave, square wave or a triangle wave, [1] [2] [3] powered by a direct current (DC) source.
where the amplitude of the modulating sinusoid is represented in the peak deviation = (see frequency deviation). The harmonic distribution of a sine wave carrier modulated by such a sinusoidal signal can be represented with Bessel functions ; this provides the basis for a mathematical understanding of frequency modulation in the frequency domain.
Looking at the amplitude of x(t) as a function of the driving frequency ω, the amplitude is maximal at the driving frequency =. ω r is the resonant frequency for this system. Again, the resonant frequency does not equal the undamped angular frequency ω 0 of the oscillator. They are proportional, and if the damping ratio goes to zero they are ...
The Q factor is a parameter that describes the resonance behavior of an underdamped harmonic oscillator (resonator). Sinusoidally driven resonators having higher Q factors resonate with greater amplitudes (at the resonant frequency) but have a smaller range of frequencies around that frequency for which they resonate; the range of frequencies for which the oscillator resonates is called the ...