Search results
Results from the WOW.Com Content Network
ML.NET is a free software machine learning library for the C# and F# programming languages. [4] [5] [6] It also supports Python models when used together with NimbusML.The preview release of ML.NET included transforms for feature engineering like n-gram creation, and learners to handle binary classification, multi-class classification, and regression tasks. [7]
scikit-learn (formerly scikits.learn and also known as sklearn) is a free and open-source machine learning library for the Python programming language. [3] It features various classification, regression and clustering algorithms including support-vector machines, random forests, gradient boosting, k-means and DBSCAN, and is designed to interoperate with the Python numerical and scientific ...
High-quality labeled training datasets for supervised and semi-supervised machine learning algorithms are usually difficult and expensive to produce because of the large amount of time needed to label the data. Although they do not need to be labeled, high-quality datasets for unsupervised learning can also be difficult and costly to produce ...
The Open Neural Network Exchange (ONNX) [ˈɒnɪks] [2] is an open-source artificial intelligence ecosystem [3] of technology companies and research organizations that establish open standards for representing machine learning algorithms and software tools to promote innovation and collaboration in the AI sector. ONNX is available on GitHub.
DVC is a free and open-source, platform-agnostic version system for data, machine learning models, and experiments. [1] It is designed to make ML models shareable, experiments reproducible, [2] and to track versions of models, data, and pipelines. [3] [4] [5] DVC works on top of Git repositories [6] and cloud storage. [7]
LightGBM, short for Light Gradient-Boosting Machine, is a free and open-source distributed gradient-boosting framework for machine learning, originally developed by Microsoft. [4] [5] It is based on decision tree algorithms and used for ranking, classification and other machine learning tasks. The development focus is on performance and ...
During the Google I/O Conference in June 2016, Jeff Dean stated that 1,500 repositories on GitHub mentioned TensorFlow, of which only 5 were from Google. [20] In March 2018, Google announced TensorFlow.js version 1.0 for machine learning in JavaScript. [21] In Jan 2019, Google announced TensorFlow 2.0. [22] It became officially available in ...
In the fall of 2018, fast.ai released v1.0 of their free open-source library for deep learning called fastai (without a period), sitting atop PyTorch. Google Cloud was the first to announce its support. [6] This open-source framework is hosted on GitHub and is licensed under the Apache License, Version 2.0. [7] [8]