Ad
related to: on graph products of monoids in water and air
Search results
Results from the WOW.Com Content Network
Many definitions and theorems about monoids can be generalised to small categories with more than one object. For example, a quotient of a category with one object is just a quotient monoid. Monoids, just like other algebraic structures, also form their own category, Mon, whose objects are monoids and whose morphisms are monoid homomorphisms. [8]
M. Kilp, U. Knauer, A.V. Mikhalev, Monoids, Acts and Categories with Applications to Wreath Products and Graphs, De Gruyter Expositions in Mathematics vol. 29, Walter de Gruyter, 2000, ISBN 3-11-015248-7. Ronald V. Book and Friedrich Otto, String-rewriting Systems, Springer, 1993, ISBN 0-387-97965-4, chapter 7, "Algebraic Properties"
A monoid object in the category of monoids (with the direct product of monoids) is just a commutative monoid. This follows easily from the Eckmann–Hilton argument. A monoid object in the category of complete join-semilattices Sup (with the monoidal structure induced by the Cartesian product) is a unital quantale.
Any category with finite products can be regarded as monoidal with the product as the monoidal product and the terminal object as the unit. Such a category is sometimes called a cartesian monoidal category. For example: Set, the category of sets with the Cartesian product, any particular one-element set serving as the unit.
In graph theory, a graph product is a binary operation on graphs. Specifically, it is an operation that takes two graphs G 1 and G 2 and produces a graph H with the following properties: The vertex set of H is the Cartesian product V ( G 1 ) × V ( G 2 ) , where V ( G 1 ) and V ( G 2 ) are the vertex sets of G 1 and G 2 , respectively.
In category theory, a branch of mathematics, a pushout (also called a fibered coproduct or fibered sum or cocartesian square or amalgamated sum) is the colimit of a diagram consisting of two morphisms f : Z → X and g : Z → Y with a common domain.
Pages in category "Graph products" The following 12 pages are in this category, out of 12 total. This list may not reflect recent changes. ...
Tensor products. If R is a ring and M is a right R-module, then the tensor product with M yields a functor F : R-Mod → Ab. The functor G : Ab → R-Mod, defined by G(A) = hom Z (M,A) for every abelian group A, is a right adjoint to F. From monoids and groups to rings. The integral monoid ring construction gives a functor from monoids to rings ...
Ad
related to: on graph products of monoids in water and air