enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cartesian product - Wikipedia

    en.wikipedia.org/wiki/Cartesian_product

    If the Cartesian product rows × columns is taken, the cells of the table contain ordered pairs of the form (row value, column value). [4] One can similarly define the Cartesian product of n sets, also known as an n-fold Cartesian product, which can be represented by an n-dimensional array, where each element is an n-tuple.

  3. Product (category theory) - Wikipedia

    en.wikipedia.org/wiki/Product_(category_theory)

    In category theory, the product of two (or more) objects in a category is a notion designed to capture the essence behind constructions in other areas of mathematics such as the Cartesian product of sets, the direct product of groups or rings, and the product of topological spaces.

  4. Product category - Wikipedia

    en.wikipedia.org/wiki/Product_category

    For small categories, this is the same as the action on objects of the categorical product in the category Cat. A functor whose domain is a product category is known as a bifunctor. An important example is the Hom functor, which has the product of the opposite of some category with the original category as domain: Hom : C op × C → Set.

  5. Product (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Product_(mathematics)

    In set theory, a Cartesian product is a mathematical operation which returns a set (or product set) from multiple sets. That is, for sets A and B, the Cartesian product A × B is the set of all ordered pairs (a, b) —where a ∈ A and b ∈ B. [5] The class of all things (of a given type) that have Cartesian products is called a Cartesian ...

  6. Product order - Wikipedia

    en.wikipedia.org/wiki/Product_order

    The lexicographic combination of two total orders is a linear extension of their product order, and thus the product order is a subrelation of the lexicographic order. [3] The Cartesian product with the product order is the categorical product in the category of partially ordered sets with monotone functions. [7]

  7. Ternary relation - Wikipedia

    en.wikipedia.org/wiki/Ternary_relation

    Ternary relations may also be referred to as 3-adic, 3-ary, 3-dimensional, or 3-place. Just as a binary relation is formally defined as a set of pairs , i.e. a subset of the Cartesian product A × B of some sets A and B , so a ternary relation is a set of triples, forming a subset of the Cartesian product A × B × C of three sets A , B and C .

  8. Universal algebra - Wikipedia

    en.wikipedia.org/wiki/Universal_algebra

    3 operations: one binary, one unary, and one nullary (signature (2, 1, 0)) 3 equational laws (associativity, identity, and inverse) no quantified laws (except outermost universal quantifiers, which are allowed in varieties) A key point is that the extra operations do not add information, but follow uniquely from the usual definition of a group.

  9. Finitary relation - Wikipedia

    en.wikipedia.org/wiki/Finitary_relation

    In mathematics, a finitary relation over a sequence of sets X 1, ..., X n is a subset of the Cartesian product X 1 × ... × X n; that is, it is a set of n-tuples (x 1, ..., x n), each being a sequence of elements x i in the corresponding X i. [1] [2] [3] Typically, the relation describes a possible connection between the elements of an n-tuple.