Search results
Results from the WOW.Com Content Network
PGA records the acceleration (rate of change of speed) of these movements, while peak ground velocity is the greatest speed (rate of movement) reached by the ground, and peak displacement is the distance moved. [7] [8] These values vary in different earthquakes, and in differing sites within one earthquake event, depending on a number of ...
An accelerometer measures proper acceleration, which is the acceleration it experiences relative to freefall and is the acceleration felt by people and objects. [2] Put another way, at any point in spacetime the equivalence principle guarantees the existence of a local inertial frame, and an accelerometer measures the acceleration relative to that frame. [4]
The cross-section of a piezoelectric accelerometer. The word piezoelectric finds its roots in the Greek word piezein, which means to squeeze or press.When a physical force is exerted on the accelerometer, the seismic mass loads the piezoelectric element according to Newton's second law of motion (=).
Accelerometer; Auxanometer; Capacitive displacement sensor; Capacitive sensing; Displacement sensor (general article); Flex sensor; Free fall sensor; Gravimeter ...
For accelerometers, a seismic mass is attached to the crystal elements. When the accelerometer experiences a motion, the invariant seismic mass loads the elements according to Newton's second law of motion =. The main difference in working principle between these two cases is the way they apply forces to the sensing elements.
Sensing: measuring a mechanical input by converting it to an electrical signal, e.g. a MEMS accelerometer or a pressure sensor (could also measure electrical signals as in the case of current sensors) Actuation: using an electrical signal to cause the displacement (or rotation) of a mechanical structure, e.g. a synthetic jet actuator.
SRS representation of the transient input shown above in SRS form. A Shock Response Spectrum (SRS) [1] is a graphical representation of a shock, or any other transient acceleration input, in terms of how a Single Degree Of Freedom (SDOF) system (like a mass on a spring) would respond to that input.
An attitude and heading reference system (AHRS) consists of sensors on three axes that provide attitude information for aircraft, including roll, pitch, and yaw.These are sometimes referred to as MARG (Magnetic, Angular Rate, and Gravity) [1] sensors and consist of either solid-state or microelectromechanical systems (MEMS) gyroscopes, accelerometers and magnetometers.