Search results
Results from the WOW.Com Content Network
The first property implies that every rhombus is a parallelogram. A rhombus therefore has all of the properties of a parallelogram: for example, opposite sides are parallel; adjacent angles are supplementary; the two diagonals bisect one another; any line through the midpoint bisects the area; and the sum of the squares of the sides equals the ...
rhombus In Euclidean plane geometry , a rectangle is a rectilinear convex polygon or a quadrilateral with four right angles . It can also be defined as: an equiangular quadrilateral, since equiangular means that all of its angles are equal (360°/4 = 90°); or a parallelogram containing a right angle.
Parallelogram and Rhombus - Animated course (Construction, Circumference, Area) Weisstein, Eric W. "Parallelogram". MathWorld. Interactive Parallelogram --sides, angles and slope; Area of Parallelogram at cut-the-knot; Equilateral Triangles On Sides of a Parallelogram at cut-the-knot; Definition and properties of a parallelogram with animated ...
The golden rhombus. In geometry, a golden rhombus is a rhombus whose diagonals are in the golden ratio: [1] = = + Equivalently, it is the Varignon parallelogram formed from the edge midpoints of a golden rectangle. [1]
A convex quadrilateral is equidiagonal if and only if its Varignon parallelogram, the parallelogram formed by the midpoints of its sides, is a rhombus.An equivalent condition is that the bimedians of the quadrilateral (the diagonals of the Varignon parallelogram) are perpendicular.
Traditionally, in two-dimensional geometry, a rhomboid is a parallelogram in which adjacent sides are of unequal lengths and angles are non-right angled.. The terms "rhomboid" and "parallelogram" are often erroneously conflated with each other (i.e, when most people refer to a "parallelogram" they almost always mean a rhomboid, a specific subtype of parallelogram); however, while all rhomboids ...
Discover the best free online games at AOL.com - Play board, card, casino, puzzle and many more online games while chatting with others in real-time.
Johannes Kepler in Harmonices Mundi (1618) named this polyhedron a rhombicosidodecahedron, being short for truncated icosidodecahedral rhombus, with icosidodecahedral rhombus being his name for a rhombic triacontahedron.