enow.com Web Search

  1. Ads

    related to: 4 wide flange beam properties

Search results

  1. Results from the WOW.Com Content Network
  2. ASTM A992 - Wikipedia

    en.wikipedia.org/wiki/ASTM_A992

    ASTM A992 steel is a structural steel alloy often used in the US for steel wide-flange and I beams. Like other carbon steels, the density of ASTM A992 steel is approximately 7850 kg/m 3 (0.2836 lb/in 3). ASTM A992 steel has the following minimum mechanical properties, according to ASTM specification A992/A992M.

  3. I-beam - Wikipedia

    en.wikipedia.org/wiki/I-beam

    For example, a "W10x22" beam is approximately 10 in (254 mm) in depth with a nominal height of the I-beam from the outer face of one flange to the outer face of the other flange, and weighs 22 lb/ft (33 kg/m). Wide flange section beams often vary from their nominal depth. In the case of the W14 series, they may be as deep as 22.84 in (580 mm).

  4. DIN 1025 - Wikipedia

    en.wikipedia.org/wiki/DIN_1025

    DIN 1025 is a DIN standard which defines the dimensions, masses and sectional properties of hot rolled I-beams.. The standard is divided in 5 parts: DIN 1025-1: Hot rolled I-sections - Part 1: Narrow flange I-sections, I-serie - Dimensions, masses, sectional properties

  5. Structural steel - Wikipedia

    en.wikipedia.org/wiki/Structural_steel

    A steel Ɪ-beam, in this case used to support timber joists in a house Ɪ-beam (serif capital 'Ɪ'-shaped cross-section – in Britain these include Universal Beams (UB) and Universal Columns (UC); in Europe it includes the IPE, HE, HL, HD and other sections; in the US it includes Wide Flange (WF or W-Shape) and H sections)

  6. Section modulus - Wikipedia

    en.wikipedia.org/wiki/Section_modulus

    In solid mechanics and structural engineering, section modulus is a geometric property of a given cross-section used in the design of beams or flexural members.Other geometric properties used in design include: area for tension and shear, radius of gyration for compression, and second moment of area and polar second moment of area for stiffness.

  7. Beam (structure) - Wikipedia

    en.wikipedia.org/wiki/Beam_(structure)

    If the beam is bent side to side, it functions as an 'H', where it is less efficient. The most efficient shape for both directions in 2D is a box (a square shell); the most efficient shape for bending in any direction, however, is a cylindrical shell or tube. For unidirectional bending, the Ɪ-beam or wide flange beam is superior. [5]

  1. Ads

    related to: 4 wide flange beam properties