Search results
Results from the WOW.Com Content Network
Thus, USB cables have different ends: A and B, with different physical connectors for each. Each format has a plug and receptacle defined for each of the A and B ends. A USB cable, by definition, has a plug on each end—one A (or C) and one B (or C)—and the corresponding receptacle is usually on a computer or electronic device.
Dia has special objects to help draw entity-relationship models, Unified Modeling Language (UML) diagrams, flowcharts, network diagrams, and simple electrical circuits. It is also possible to add support for new shapes by writing simple XML files, using a subset of Scalable Vector Graphics (SVG) to draw the shape.
Whereas earlier USB cables had a host end A and a peripheral device end B, a USB-C cable connects either way; and for interoperation with older equipment, there are cables with a Type-C plug at one end and either a Type-A (host) or a Type-B (peripheral device) plug at the other. The designation "C" refers only to the connector's physical ...
EAGLE contains a schematic editor, for designing circuit diagrams. Schematics are stored in files with .SCH extension, parts are defined in device libraries with .LBR extension. Parts can be placed on many sheets and connected together through ports. The PCB layout editor stores board files with the extension .BRD.
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.
USB 3.2, released in September 2017, [35] preserves existing USB 3.1 SuperSpeed and SuperSpeedPlus architectures and protocols and their respective operation modes, but introduces two additional SuperSpeedPlus operation modes (USB 3.2 Gen 1×2 and USB 3.2 Gen 2×2) with the new USB-C Fabric with signaling rates of 10 and 20 Gbit/s (raw data ...
Especially valuable is the method of referencing and annotating cables plus their connectors within and outside assemblies. Examples: 1A1A44J5 - Unit 1, Assembly 1, Sub-Assembly 44, Jack 5 (J5 is a connector on a box referenced as A44) 1A1A45J333 - Unit 1, Assembly 1, Sub-Assembly 45, Jack 333 (J333 is a connector on a box referenced as A45)
Schematic capture or schematic entry is a step in the design cycle of electronic design automation (EDA) at which the electronic diagram, or electronic schematic of the designed electronic circuit, is created by a designer. This is done interactively with the help of a schematic capture tool also known as schematic editor. [1]