enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Ramanujan's sum - Wikipedia

    en.wikipedia.org/wiki/Ramanujan's_sum

    In number theory, Ramanujan's sum, usually denoted c q (n), is a function of two positive integer variables q and n defined by the formula = (,) =,where (a, q) = 1 means that a only takes on values coprime to q.

  3. Ramanujan summation - Wikipedia

    en.wikipedia.org/wiki/Ramanujan_summation

    Ramanujan summation is a technique invented by the mathematician Srinivasa Ramanujan for assigning a value to divergent infinite series.Although the Ramanujan summation of a divergent series is not a sum in the traditional sense, it has properties that make it mathematically useful in the study of divergent infinite series, for which conventional summation is undefined.

  4. 1 + 2 + 3 + 4 + ⋯ - Wikipedia

    en.wikipedia.org/wiki/1_%2B_2_%2B_3_%2B_4_%2B_%E...

    Ramanujan summation is a method to isolate the constant term in the Euler–Maclaurin formula for the partial sums of a series. For a function f, the classical Ramanujan sum of the series = is defined as

  5. 17 Best Soup Recipes For Weight Loss - AOL

    www.aol.com/17-best-soup-recipes-weight...

    This tomato and black bean soup is full of protein (16 grams) and fiber (8 grams) because of the ham hock, black beans, veggies, and fat-free Greek yogurt, making it an ideal weight loss soup to ...

  6. Taxicab number - Wikipedia

    en.wikipedia.org/wiki/Taxicab_number

    In mathematics, the nth taxicab number, typically denoted Ta(n) or Taxicab(n), is defined as the smallest integer that can be expressed as a sum of two positive integer cubes in n distinct ways. [1] The most famous taxicab number is 1729 = Ta(2) = 1 3 + 12 3 = 9 3 + 10 3 , also known as the Hardy-Ramanujan number.

  7. Arithmetic function - Wikipedia

    en.wikipedia.org/wiki/Arithmetic_function

    completely additive if a(mn) = a(m) + a(n) for all natural numbers m and n; completely multiplicative if a(mn) = a(m)a(n) for all natural numbers m and n; Two whole numbers m and n are called coprime if their greatest common divisor is 1, that is, if there is no prime number that divides both of them. Then an arithmetic function a is

  8. Rogers–Ramanujan identities - Wikipedia

    en.wikipedia.org/wiki/Rogers–Ramanujan_identities

    Since the terms occurring in the identity are generating functions of certain partitions, the identities make statements about partitions (decompositions) of natural numbers. The number sequences resulting from the coefficients of the Maclaurin series of the Rogers–Ramanujan functions G and H are special partition number sequences of level 5:

  9. Colossally abundant number - Wikipedia

    en.wikipedia.org/wiki/Colossally_abundant_number

    Sigma function σ 1 (n) up to n = 250 Prime-power factors. In number theory, a colossally abundant number (sometimes abbreviated as CA) is a natural number that, in a particular, rigorous sense, has many divisors. Particularly, it is defined by a ratio between the sum of an integer's divisors and that integer raised to a power higher than one ...

  1. Related searches ramanujan sum of natural numbers from m to n calculator soup recipe for weight loss

    ramanujan sum formularamanujan summation
    ramanujan's sumramanujan divergent sum
    ramanujan formula