Search results
Results from the WOW.Com Content Network
The sector contour used to calculate the limits of the Fresnel integrals. This can be derived with any one of several methods. One of them [5] uses a contour integral of the function around the boundary of the sector-shaped region in the complex plane formed by the positive x-axis, the bisector of the first quadrant y = x with x ≥ 0, and a circular arc of radius R centered at the origin.
Theorema egregium of Gauss states that the Gaussian curvature of a surface can be expressed solely in terms of the first fundamental form and its derivatives, so that K is in fact an intrinsic invariant of the surface. An explicit expression for the Gaussian curvature in terms of the first fundamental form is provided by the Brioschi formula.
The normal curvature, k n, is the curvature of the curve projected onto the plane containing the curve's tangent T and the surface normal u; the geodesic curvature, k g, is the curvature of the curve projected onto the surface's tangent plane; and the geodesic torsion (or relative torsion), τ r, measures the rate of change of the surface ...
The formula is given in verses 17–19, chapter VII, Mahabhaskariya of Bhāskara I. A translation of the verses is given below: [3] (Now) I briefly state the rule (for finding the bhujaphala and the kotiphala, etc.) without making use of the Rsine-differences 225, etc. Subtract the degrees of a bhuja (or koti) from the degrees of a half circle (that is, 180 degrees).
The haversine formula determines the great-circle distance between two points on a sphere given their longitudes and latitudes.Important in navigation, it is a special case of a more general formula in spherical trigonometry, the law of haversines, that relates the sides and angles of spherical triangles.
Up to a sign, these quantities are independent of the parametrization used, and hence form important tools for analysing the geometry of the surface. More precisely, the principal curvatures and the mean curvature change the sign if the orientation of the surface is reversed, and the Gaussian curvature is entirely independent of the ...
The product k 1 k 2 of the two principal curvatures is the Gaussian curvature, K, and the average (k 1 + k 2)/2 is the mean curvature, H. If at least one of the principal curvatures is zero at every point, then the Gaussian curvature will be 0 and the surface is a developable surface. For a minimal surface, the mean curvature is zero at every ...
For a surface defined in 3D space, the mean curvature is related to a unit normal of the surface: = ^ where the normal chosen affects the sign of the curvature. The sign of the curvature depends on the choice of normal: the curvature is positive if the surface curves "towards" the normal.