enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gauss sum - Wikipedia

    en.wikipedia.org/wiki/Gauss_sum

    The case originally considered by Carl Friedrich Gauss was the quadratic Gauss sum, for R the field of residues modulo a prime number p, and χ the Legendre symbol.In this case Gauss proved that G(χ) = p 1 ⁄ 2 or ip 1 ⁄ 2 for p congruent to 1 or 3 modulo 4 respectively (the quadratic Gauss sum can also be evaluated by Fourier analysis as well as by contour integration).

  3. Quadratic Gauss sum - Wikipedia

    en.wikipedia.org/wiki/Quadratic_Gauss_sum

    A quadratic Gauss sum can be interpreted as a linear combination of the values of the complex exponential function with coefficients given by a quadratic character; for a general character, one obtains a more general Gauss sum. These objects are named after Carl Friedrich Gauss, who studied them extensively and applied them to quadratic, cubic ...

  4. Carl Friedrich Gauss - Wikipedia

    en.wikipedia.org/wiki/Carl_Friedrich_Gauss

    This is an accepted version of this page This is the latest accepted revision, reviewed on 28 December 2024. German mathematician, astronomer, geodesist, and physicist (1777–1855) "Gauss" redirects here. For other uses, see Gauss (disambiguation). Carl Friedrich Gauss Portrait by Christian Albrecht Jensen, 1840 (copy from Gottlieb Biermann, 1887) Born Johann Carl Friedrich Gauss (1777-04-30 ...

  5. Arithmetic progression - Wikipedia

    en.wikipedia.org/wiki/Arithmetic_progression

    According to an anecdote of uncertain reliability, [1] in primary school Carl Friedrich Gauss reinvented the formula (+) for summing the integers from 1 through , for the case =, by grouping the numbers from both ends of the sequence into pairs summing to 101 and multiplying by the number of pairs. Regardless of the truth of this story, Gauss ...

  6. Gaussian period - Wikipedia

    en.wikipedia.org/wiki/Gaussian_period

    As is discussed in more detail below, the Gaussian periods are closely related to another class of sums of roots of unity, now generally called Gauss sums (sometimes Gaussian sums). The quantity P − P * presented above is a quadratic Gauss sum mod p , the simplest non-trivial example of a Gauss sum.

  7. Disquisitiones Arithmeticae - Wikipedia

    en.wikipedia.org/wiki/Disquisitiones_Arithmeticae

    Disquisitiones Arithmeticae (Latin for Arithmetical Investigations) is a textbook on number theory written in Latin by Carl Friedrich Gauss in 1798, when Gauss was 21, and published in 1801, when he was 24. It had a revolutionary impact on number theory by making the field truly rigorous and systematic and paved the path for modern number theory.

  8. History of mathematical notation - Wikipedia

    en.wikipedia.org/wiki/History_of_mathematical...

    At the turn of the 19th century, Carl Friedrich Gauss developed the identity sign for congruence relation and, in quadratic reciprocity, the integral part. Gauss developed functions of complex variables, functions of geometry, and functions for the convergence of series.

  9. Gaussian integral - Wikipedia

    en.wikipedia.org/wiki/Gaussian_integral

    A different technique, which goes back to Laplace (1812), [3] is the following. Let = =. Since the limits on s as y → ±∞ depend on the sign of x, it simplifies the calculation to use the fact that e −x 2 is an even function, and, therefore, the integral over all real numbers is just twice the integral from zero to infinity.