Search results
Results from the WOW.Com Content Network
Pressure drops gradually as blood flows from the major arteries, through the arterioles, the capillaries until blood is pushed up back into the heart via the venules, the veins through the vena cava with the help of the muscles. At any given pressure drop, the flow rate is determined by the resistance to the blood flow.
Blood exits the glomerular capillaries by an efferent arteriole instead of a venule, as is seen in the majority of capillary systems (Fig. 4). [3] This provides tighter control over the blood flow through the glomerulus, since arterioles dilate and constrict more readily than venules, owing to their thick circular smooth muscle layer (tunica ...
Blood viscosity is a measure of the resistance of blood to flow. It can also be described as the thickness and stickiness of blood. This biophysical property makes it a critical determinant of friction against the vessel walls, the rate of venous return, the work required for the heart to pump blood, and how much oxygen is transported to tissues and organs.
The term phase is sometimes used as a synonym for state of matter, but it is possible for a single compound to form different phases that are in the same state of matter. For example, ice is the solid state of water, but there are multiple phases of ice with different crystal structures, which are formed at different pressures and temperatures.
Chain-melted state: Metals, such as potassium, at high temperature and pressure, present properties of both a solid and liquid. Wigner crystal: a crystalline phase of low-density electrons. Hexatic state, a state of matter that is between the solid and the isotropic liquid phases in two dimensional systems of particles. Ferroics
These phases may consist of one chemical component (e.g. flow of water and water vapour), or several different chemical components (e.g. flow of oil and water). [3] A phase is classified as continuous if it occupies a continually connected region of space (as opposed to disperse if the phase occupies disconnected regions of space).
The solid phase of water is known as ice and commonly takes the structure of hard, amalgamated crystals, such as ice cubes, or loosely accumulated granular crystals, like snow. Aside from common hexagonal crystalline ice, other crystalline and amorphous phases of ice are known. The gaseous phase of water is known as water vapor (or steam ...
The solid–liquid phase boundary can only end in a critical point if the solid and liquid phases have the same symmetry group. [5] For most substances, the solid–liquid phase boundary (or fusion curve) in the phase diagram has a positive slope so that the melting point increases with pressure.