Search results
Results from the WOW.Com Content Network
Freezing is a phase transition in which a liquid turns into a solid when its temperature is lowered below its freezing point. [ 1 ] [ 2 ] For most substances, the melting and freezing points are the same temperature; however, certain substances possess differing solid-liquid transition temperatures.
If a gap exists between the solidus and liquidus it is called the freezing range, and within that gap, the substance consists of a mixture of solid and liquid phases (like a slurry). Such is the case, for example, with the olivine ( forsterite - fayalite ) system, which is common in Earth's mantle .
The phenomenon of freezing-point depression has many practical uses. The radiator fluid in an automobile is a mixture of water and ethylene glycol. The freezing-point depression prevents radiators from freezing in winter. Road salting takes advantage of this effect to lower the freezing point of the ice it is placed on.
The freezing point of a solvent is depressed when another compound is added, meaning that a solution has a lower freezing point than a pure solvent. This phenomenon is used in technical applications to avoid freezing, for instance by adding salt or ethylene glycol to water. [citation needed]
freezing point. Also crystallization point. The temperature at which a substance changes state from a liquid to a solid. Because freezing is the reverse of melting, the freezing point of a substance is identical to its melting point, but by convention only the melting point is referred to as a characteristic property of a substance.
Supercooling is the cooling of a liquid below its freezing point without it becoming solid. Freezing point depression is when a solution can be cooled below the freezing point of the corresponding pure liquid due to the presence of the solute; an example of this is the freezing point depression that occurs when salt is added to pure water.
Flash freezing being used for cryopreservation. Flash freezing is used in the food industry to quickly freeze perishable food items (see frozen food). In this case, food items are subjected to temperatures well below [clarification needed] the freezing point of water. Thus, smaller ice crystals are formed, causing less damage to cell membranes. [4]
Examples of other defining points are the triple point of hydrogen (−259.3467 °C) and the freezing point of aluminum (660.323 °C). Thermometers calibrated per ITS–90 use complex mathematical formulas to interpolate between its defined points. ITS–90 specifies rigorous control over variables to ensure reproducibility from lab to lab.