Search results
Results from the WOW.Com Content Network
In mathematical optimization, the method of Lagrange multipliers is a strategy for finding the local maxima and minima of a function subject to equation constraints (i.e., subject to the condition that one or more equations have to be satisfied exactly by the chosen values of the variables). [1] It is named after the mathematician Joseph-Louis ...
Basic goal seeking functionality is built into most modern spreadsheet packages such as Microsoft Excel. According to O'Brien and Marakas, [1] optimization analysis is a more complex extension of goal-seeking analysis. Instead of setting a specific target value for a variable, the goal is to find the optimum value for one or more target ...
If the constrained problem has only equality constraints, the method of Lagrange multipliers can be used to convert it into an unconstrained problem whose number of variables is the original number of variables plus the original number of equality constraints. Alternatively, if the constraints are all equality constraints and are all linear ...
g i (x) ≤ 0 are called inequality constraints; h j (x) = 0 are called equality constraints, and; m ≥ 0 and p ≥ 0. If m = p = 0, the problem is an unconstrained optimization problem. By convention, the standard form defines a minimization problem. A maximization problem can be treated by negating the objective function.
Quadratic programming (QP) is the process of solving certain mathematical optimization problems involving quadratic functions.Specifically, one seeks to optimize (minimize or maximize) a multivariate quadratic function subject to linear constraints on the variables.
It turns out that any linear programming problem can be reduced to a linear feasibility problem (i.e. minimize the zero function subject to some linear inequality and equality constraints). One way to do this is by combining the primal and dual linear programs together into one program, and adding the additional (linear) constraint that the ...
In general, the number of possible patterns grows exponentially as a function of m, the number of orders. As the number of orders increases, it may therefore become impractical to enumerate the possible cutting patterns. An alternative approach uses delayed column-generation. This method solves the cutting-stock problem by starting with just a ...
If there is more than one constraint (for example, both a volume limit and a weight limit, where the volume and weight of each item are not related), we get the multiple-constrained knapsack problem, multidimensional knapsack problem, or m-dimensional knapsack problem. (Note, "dimension" here does not refer to the shape of any items.)