Search results
Results from the WOW.Com Content Network
It is possible to have multiple independent variables or multiple dependent variables. For instance, in multivariable calculus, one often encounters functions of the form z = f(x,y), where z is a dependent variable and x and y are independent variables. [8] Functions with multiple outputs are often referred to as vector-valued functions.
a function of t, determines the behavior and properties of the probability distribution of X. It is equivalent to a probability density function or cumulative distribution function, since knowing one of these functions allows computation of the others, but they provide different insights into the features of the random variable. In particular ...
In an economic model, an exogenous variable is one whose measure is determined outside the model and is imposed on the model, and an exogenous change is a change in an exogenous variable. [1]: p. 8 [2]: p. 202 [3]: p. 8 In contrast, an endogenous variable is a variable whose measure is determined by the model. An endogenous change is a change ...
In some instances of bivariate data, it is determined that one variable influences or determines the second variable, and the terms dependent and independent variables are used to distinguish between the two types of variables. In the above example, the length of a person's legs is the independent variable.
One could approach this function more formally and think about its domain and range: in function notation, here is a function : > >. However, in an experiment, in order to determine the dependence of pressure on a single one of the independent variables, it is necessary to fix all but one of the variables, say T {\displaystyle T} .
This simple model is an example of binary logistic regression, and has one explanatory variable and a binary categorical variable which can assume one of two categorical values. Multinomial logistic regression is the generalization of binary logistic regression to include any number of explanatory variables and any number of categories.
However, even for non-real-valued random variables, moments can be taken of real-valued functions of those variables. For example, for a categorical random variable X that can take on the nominal values "red", "blue" or "green", the real-valued function [=] can be constructed; this uses the Iverson bracket, and has the value 1 if has the value ...
A multivariate function, multivariable function, or function of several variables is a function that depends on several arguments. Such functions are commonly encountered. For example, the position of a car on a road is a function of the time travelled and its average speed.