enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of equations in fluid mechanics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in_fluid...

    List of equations in fluid mechanics. ... Download as PDF; Printable version; In other projects ... For this reason flux represents physically a flow per unit area.

  3. Reynolds-averaged Navier–Stokes equations - Wikipedia

    en.wikipedia.org/wiki/Reynolds-averaged_Navier...

    These equations can be used with approximations based on knowledge of the properties of flow turbulence to give approximate time-averaged solutions to the Navier–Stokes equations. For a stationary flow of an incompressible Newtonian fluid, these equations can be written in Einstein notation in Cartesian coordinates as

  4. Finite volume method for unsteady flow - Wikipedia

    en.wikipedia.org/wiki/Finite_volume_method_for...

    The control volume integration of the steady part of the equation is similar to the steady state governing equation's integration. We need to focus on the integration of the unsteady component of the equation. To get a feel of the integration technique, we refer to the one-dimensional unsteady heat conduction equation. [3]

  5. Volumetric flow rate - Wikipedia

    en.wikipedia.org/wiki/Volumetric_flow_rate

    In most contexts a mention of rate of fluid flow is likely to refer to the volumetric rate. In hydrometry, the volumetric flow rate is known as discharge. Volumetric flow rate should not be confused with volumetric flux, as defined by Darcy's law and represented by the symbol q, with units of m 3 /(m 2 ·s), that is, m·s −1.

  6. Rayleigh's equation (fluid dynamics) - Wikipedia

    en.wikipedia.org/wiki/Rayleigh's_equation_(fluid...

    In fluid dynamics, Rayleigh's equation or Rayleigh stability equation is a linear ordinary differential equation to study the hydrodynamic stability of a parallel, incompressible and inviscid shear flow. The equation is: [1] (″) ″ =, with () the flow velocity of the steady base flow whose stability is to be studied and is the cross-stream ...

  7. Euler equations (fluid dynamics) - Wikipedia

    en.wikipedia.org/wiki/Euler_equations_(fluid...

    This equation states: In a steady flow of an inviscid fluid without external forces, the center of curvature of the streamline lies in the direction of decreasing radial pressure. Although this relationship between the pressure field and flow curvature is very useful, it doesn't have a name in the English-language scientific literature. [25]

  8. Dynamic similarity (Reynolds and Womersley numbers)

    en.wikipedia.org/wiki/Dynamic_similarity...

    The Reynolds and Womersley Numbers are also used to calculate the thicknesses of the boundary layers that can form from the fluid flow’s viscous effects. The Reynolds number is used to calculate the convective inertial boundary layer thickness that can form, and the Womersley number is used to calculate the transient inertial boundary thickness that can form.

  9. Bernoulli's principle - Wikipedia

    en.wikipedia.org/wiki/Bernoulli's_principle

    If the fluid flow is irrotational, the total pressure is uniform and Bernoulli's principle can be summarized as "total pressure is constant everywhere in the fluid flow". [1]: Equation 3.12 It is reasonable to assume that irrotational flow exists in any situation where a large body of fluid is flowing past a solid body. Examples are aircraft in ...