Search results
Results from the WOW.Com Content Network
For a reversible reaction, the equilibrium constant can be measured at a variety of temperatures. This data can be plotted on a graph with ln K eq on the y-axis and 1 / T on the x axis. The data should have a linear relationship, the equation for which can be found by fitting the data using the linear form of the Van 't Hoff equation
For an equilibrium mixture of gases, an equilibrium constant can be defined in terms of partial pressure or fugacity. An equilibrium constant is related to the forward and backward rate constants, k f and k r of the reactions involved in reaching equilibrium: =.
The value of the equilibrium constant for the formation of a 1:1 complex, such as a host-guest species, may be calculated with a dedicated spreadsheet application, Bindfit: [4] In this case step 2 can be performed with a non-iterative procedure and the pre-programmed routine Solver can be used for step 3.
In 1884, Jacobus van 't Hoff proposed the Van 't Hoff equation describing the temperature dependence of the equilibrium constant for a reversible reaction: = where ΔU is the change in internal energy, K is the equilibrium constant of the reaction, R is the universal gas constant, and T is thermodynamic temperature.
The Hammett equation predicts the equilibrium constant or reaction rate of a reaction from a substituent constant and a reaction type constant. The Edwards equation relates the nucleophilic power to polarisability and basicity. The Marcus equation is an example of a quadratic free-energy relationship (QFER). [citation needed]
The Benesi–Hildebrand method is a mathematical approach used in physical chemistry for the determination of the equilibrium constant K and stoichiometry of non-bonding interactions. This method has been typically applied to reaction equilibria that form one-to-one complexes, such as charge-transfer complexes and host–guest molecular ...
In chemistry, biochemistry, and pharmacology, a dissociation constant (K D) is a specific type of equilibrium constant that measures the propensity of a larger object to separate (dissociate) reversibly into smaller components, as when a complex falls apart into its component molecules, or when a salt splits up into its component ions.
The fractional extent of the reaction (i.e. the percentage change in concentration of a measurable species) depends on the molar enthalpy change (ΔH°) between the reactants and products and the equilibrium position. If K is the equilibrium constant and dT is the change in temperature then the enthalpy change is given by the Van 't Hoff equation: