enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Glucokinase - Wikipedia

    en.wikipedia.org/wiki/Glucokinase

    The separate liver promoter allows glucokinase to be regulated differently in hepatocytes than in the neuroendocrine cells. Neuroendocrine cells of the pancreas, gut, and brain share some common aspects of glucokinase production, regulation, and function. [30] These tissues are collectively referred to as "neuroendocrine" cells in this context.

  3. Glucokinase regulatory protein - Wikipedia

    en.wikipedia.org/wiki/Glucokinase_regulatory_protein

    The glucokinase regulatory protein (GKRP) also known as glucokinase (hexokinase 4) regulator (GCKR) is a protein produced in hepatocytes (liver cells). GKRP binds and moves glucokinase (GK), thereby controlling both activity and intracellular location [1] [2] of this key enzyme of glucose metabolism. [3] GKRP is a 68 kD protein of 626 amino acids.

  4. Glucokinase regulator - Wikipedia

    en.wikipedia.org/wiki/Glucokinase_regulator

    The gene product is a regulatory protein that inhibits glucokinase in liver and pancreatic islet cells by binding non-covalently to form an inactive complex with the enzyme. This gene is considered a susceptibility gene candidate for a form of maturity onset diabetes of the young (MODY). [provided by RefSeq, Jul 2008].

  5. Enzyme activator - Wikipedia

    en.wikipedia.org/wiki/Enzyme_activator

    Glucokinase (GK) is an enzyme that helps in the glycolytic pathway by phosphorylating glucose into glucose-6-phosphate (G6P). It is an isozyme of hexokinase and is found mainly in pancreatic β cells, but also liver, gut, and brain cells where glycolysis cause glucose-induced insulin secretion. [2]

  6. Gluconeogenesis - Wikipedia

    en.wikipedia.org/wiki/Gluconeogenesis

    Hexokinase/glucokinase, phosphofructokinase, and pyruvate kinase enzymes of glycolysis are replaced with glucose-6-phosphatase, fructose-1,6-bisphosphatase, and PEP carboxykinase/pyruvate carboxylase. These enzymes are typically regulated by similar molecules, but with opposite results.

  7. Isozyme - Wikipedia

    en.wikipedia.org/wiki/Isozyme

    An example of an isozyme is glucokinase, a variant of hexokinase which is not inhibited by glucose 6-phosphate. Its different regulatory features and lower affinity for glucose (compared to other hexokinases), allow it to serve different functions in cells of specific organs, such as control of insulin release by the beta cells of the pancreas ...

  8. Glycogenesis - Wikipedia

    en.wikipedia.org/wiki/Glycogenesis

    This amplifies the effect of activating glycogen phosphorylase. This inhibition is achieved by a similar mechanism, as protein kinase A acts to phosphorylate the enzyme, which lowers activity. This is known as co-ordinate reciprocal control. Refer to glycolysis for further information of the regulation of glycogenesis.

  9. Hexokinase - Wikipedia

    en.wikipedia.org/wiki/Hexokinase

    Hexokinase II/B constitutes the principal regulated isoenzyme in many cell types and is increased in many cancers. It is the hexokinase found in muscle and heart. Hexokinase II is also located at the mitochondria outer membrane so it can have direct access to ATP. [ 7 ]