Search results
Results from the WOW.Com Content Network
The complex dot product leads to the notions of Hermitian forms and general inner product spaces, which are widely used in mathematics and physics. The self dot product of a complex vector =, involving the conjugate transpose of a row vector, is also known as the norm squared, = ‖ ‖, after the Euclidean norm; it is a vector generalization ...
Cross product – also known as the "vector product", a binary operation on two vectors that results in another vector. The cross product of two vectors in 3-space is defined as the vector perpendicular to the plane determined by the two vectors whose magnitude is the product of the magnitudes of the two vectors and the sine of the angle ...
Vector algebra relations — regarding operations on individual vectors such as dot product, cross product, etc. Vector calculus identities — regarding operations on vector fields such as divergence, gradient, curl, etc.
The following are important identities in vector algebra.Identities that only involve the magnitude of a vector ‖ ‖ and the dot product (scalar product) of two vectors A·B, apply to vectors in any dimension, while identities that use the cross product (vector product) A×B only apply in three dimensions, since the cross product is only defined there.
Another method of deriving vector and tensor derivative identities is to replace all occurrences of a vector in an algebraic identity by the del operator, provided that no variable occurs both inside and outside the scope of an operator or both inside the scope of one operator in a term and outside the scope of another operator in the same term ...
Vector Analysis is a textbook by Edwin Bidwell Wilson, first published in 1901 and based on the lectures that Josiah Willard Gibbs had delivered on the subject at Yale University. The book did much to standardize the notation and vocabulary of three-dimensional linear algebra and vector calculus , as used by physicists and mathematicians.
Inner product spaces generalize Euclidean vector spaces, in which the inner product is the dot product or scalar product of Cartesian coordinates. Inner product spaces of infinite dimension are widely used in functional analysis. Inner product spaces over the field of complex numbers are sometimes referred to as unitary spaces.
The formalism of dyadic algebra is an extension of vector algebra to include the dyadic product of vectors. The dyadic product is also associative with the dot and cross products with other vectors, which allows the dot, cross, and dyadic products to be combined to obtain other scalars, vectors, or dyadics.