Search results
Results from the WOW.Com Content Network
As is good practice in these studies, the results above can be checked with a simulation. Figure 3 shows a histogram of 10000 samples of z, with the PDF given above also graphed; the agreement is excellent. In this simulation the x data had a mean of 10 and a standard deviation of 2. Thus the naive expected value for z would of
Any non-linear differentiable function, (,), of two variables, and , can be expanded as + +. If we take the variance on both sides and use the formula [11] for the variance of a linear combination of variables (+) = + + (,), then we obtain | | + | | +, where is the standard deviation of the function , is the standard deviation of , is the standard deviation of and = is the ...
Consider the problem of calculating the shape of an unknown curve which starts at a given point and satisfies a given differential equation. Here, a differential equation can be thought of as a formula by which the slope of the tangent line to the curve can be computed at any point on the curve, once the position of that point has been calculated.
The first degree polynomial equation = + is a line with slope a. A line will connect any two points, so a first degree polynomial equation is an exact fit through any two points with distinct x coordinates. If the order of the equation is increased to a second degree polynomial, the following results:
In general, every implicit curve is defined by an equation of the form (,) = for some function F of two variables. Hence an implicit curve can be considered as the set of zeros of a function of two variables. Implicit means that the equation is not expressed as a solution for either x in terms of y or vice versa.
The graph on the right illustrates an Euler spiral used as an easement (transition) curve between two given curves, in this case a straight line (the negative x axis) and a circle. The spiral starts at the origin in the positive x direction and gradually turns anticlockwise to osculate the circle.
This algebraic function can be written as the right side of the solution equation y = f(x). Written like this, f is a multi-valued implicit function. Algebraic functions play an important role in mathematical analysis and algebraic geometry. A simple example of an algebraic function is given by the left side of the unit circle equation:
On the left is a unit circle showing the changes ^ and ^ in the unit vectors ^ and ^ for a small increment in angle . During circular motion, the body moves on a curve that can be described in the polar coordinate system as a fixed distance R from the center of the orbit taken as the origin, oriented at an angle θ ( t ) from some reference ...