Search results
Results from the WOW.Com Content Network
The Auxiliary Carry flag is set (to 1) if during an "add" operation there is a carry from the low nibble (lowest four bits) to the high nibble (upper four bits), or a borrow from the high nibble to the low nibble, in the low-order 8-bit portion, during a subtraction. Otherwise, if no such carry or borrow occurs, the flag is cleared or "reset ...
[3] [48] It can perform as an 8-bit 8051, has 24-bit linear addressing, an 8-bit ALU, 8-bit instructions, 16-bit instructions, a limited set of 32-bit instructions, 16 8-bit registers, 16 16-bit registers (8 16-bit registers which do not share space with any 8-bit registers, and 8 16-bit registers which contain 2 8-bit registers per 16-bit ...
The result should be 510 which is the 9-bit value 111111110 in binary. The 8 least significant bits always stored in the register would be 11111110 binary (254 decimal) but since there is carry out of bit 7 (the eight bit), the carry is set, indicating that the result needs 9 bits. The valid 9-bit result is the concatenation of the carry flag ...
An example, suppose we add 127 and 127 using 8-bit registers. 127+127 is 254, but using 8-bit arithmetic the result would be 1111 1110 binary, which is the two's complement encoding of −2, a negative number. A negative sum of positive operands (or vice versa) is an overflow.
The IEEE 754 floating-point standard defines the exponent field of a single-precision (32-bit) number as an 8-bit excess-127 field. The double-precision (64-bit) exponent field is an 11-bit excess-1023 field; see exponent bias. It also had use for binary-coded decimal numbers as excess-3.
An 8-bit register can store 2 8 different values. The range of integer values that can be stored in 8 bits depends on the integer representation used. With the two most common representations, the range is 0 through 255 (2 8 − 1) for representation as an binary number, and −128 (−1 × 2 7) through 127 (2 7 − 1) for representation as two's complement.
The 8051 microcontroller has two, a primary accumulator and a secondary accumulator, where the second is used by instructions only when multiplying (MUL AB) or dividing (DIV AB); the former splits the 16-bit result between the two 8-bit accumulators, whereas the latter stores the quotient on the primary accumulator A and the remainder in the ...
To give an example that explains the difference between "classic" tries and bitwise tries: For numbers as keys, the alphabet for a trie could consist of the symbols '0' .. '9' to represent digits of a number in the decimal system and the nodes would have up to 10 possible children. A trie with the keys "07" and "42".