Search results
Results from the WOW.Com Content Network
Polygon mesh of a circular paraboloid Circular paraboloid. In a suitable Cartesian coordinate system, an elliptic paraboloid has the equation = +.. If a = b, an elliptic paraboloid is a circular paraboloid or paraboloid of revolution.
The coordinate surfaces of the former are parabolic cylinders, and the coordinate surfaces of the latter are circular paraboloids. Differently from cylindrical and rotational parabolic coordinates, but similarly to the related ellipsoidal coordinates , the coordinate surfaces of the paraboloidal coordinate system are not produced by rotating or ...
A circular paraboloid is theoretically unlimited in size. Any practical reflector uses just a segment of it. Often, the segment includes the vertex of the paraboloid, where its curvature is greatest, and where the axis of symmetry intersects the paraboloid. However, if the reflector is used to focus incoming energy onto a receiver, the shadow ...
A right circular cylinder is given by the equation + =. It can be parameterized as ... which is the hyperbolic paraboloid that interpolates the 4 points ,,, ...
The red paraboloid corresponds to τ=2, the blue paraboloid corresponds to σ=1, and the yellow half-plane corresponds to φ=-60°. The three surfaces intersect at the point P (shown as a black sphere) with Cartesian coordinates roughly (1.0, -1.732, 1.5).
[2] [3] The reflector is a metallic surface formed into a paraboloid of revolution and usually truncated in a circular rim that forms the diameter of the antenna. [2] In a transmitting antenna, radio frequency current from a transmitter is supplied through a transmission line cable to the feed antenna, which converts it into radio waves. The ...
The following is a list of centroids of various two-dimensional and three-dimensional objects. The centroid of an object in -dimensional space is the intersection of all hyperplanes that divide into two parts of equal moment about the hyperplane.
In the theory of quadratic forms, the parabola is the graph of the quadratic form x 2 (or other scalings), while the elliptic paraboloid is the graph of the positive-definite quadratic form x 2 + y 2 (or scalings), and the hyperbolic paraboloid is the graph of the indefinite quadratic form x 2 − y 2. Generalizations to more variables yield ...