enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Pyruvic acid - Wikipedia

    en.wikipedia.org/wiki/Pyruvic_acid

    Pyruvate, the conjugate base, CH 3 COCOO −, is an intermediate in several metabolic pathways throughout the cell. Pyruvic acid can be made from glucose through glycolysis, converted back to carbohydrates (such as glucose) via gluconeogenesis, or converted to fatty acids through a reaction with acetyl-CoA. [3]

  3. Glycolysis - Wikipedia

    en.wikipedia.org/wiki/Glycolysis

    The glycolytic end-product, pyruvate (plus NAD +) is converted to acetyl-CoA, CO 2 and NADH + H + within the mitochondria in a process called pyruvate decarboxylation. The resulting acetyl-CoA enters the citric acid cycle (or Krebs Cycle), where the acetyl group of the acetyl-CoA is converted into carbon dioxide by two decarboxylation reactions ...

  4. Pyruvate decarboxylation - Wikipedia

    en.wikipedia.org/wiki/Pyruvate_decarboxylation

    Pyruvate oxidation is the step that connects glycolysis and the Krebs cycle. [4] In glycolysis, a single glucose molecule (6 carbons) is split into 2 pyruvates (3 carbons each). Because of this, the link reaction occurs twice for each glucose molecule to produce a total of 2 acetyl-CoA molecules, which can then enter the Krebs cycle.

  5. Pyruvate cycling - Wikipedia

    en.wikipedia.org/wiki/Pyruvate_cycling

    Pyruvate cycling commonly refers to an intracellular loop of spatial movements and chemical transformations involving pyruvate. Spatial movements occur between mitochondria and cytosol and chemical transformations create various Krebs cycle intermediates. In all variants, pyruvate is imported into the mitochondrion for processing through part ...

  6. Cellular respiration - Wikipedia

    en.wikipedia.org/wiki/Cellular_respiration

    Without oxygen, pyruvate (pyruvic acid) is not metabolized by cellular respiration but undergoes a process of fermentation. The pyruvate is not transported into the mitochondrion but remains in the cytoplasm, where it is converted to waste products that may be removed from the cell. This serves the purpose of oxidizing the electron carriers so ...

  7. Gluconeogenesis - Wikipedia

    en.wikipedia.org/wiki/Gluconeogenesis

    The pathway will begin in either the liver or kidney, in the mitochondria or cytoplasm of those cells, this being dependent on the substrate being used. Many of the reactions are the reverse of steps found in glycolysis. [citation needed] Gluconeogenesis begins in the mitochondria with the formation of oxaloacetate by the carboxylation of pyruvate.

  8. Pyruvate dehydrogenase complex - Wikipedia

    en.wikipedia.org/wiki/Pyruvate_dehydrogenase_complex

    Pyruvate dehydrogenase complex. Pyruvate dehydrogenase complex (PDC) is a complex of three enzymes that converts pyruvate into acetyl-CoA by a process called pyruvate decarboxylation. [1] Acetyl-CoA may then be used in the citric acid cycle to carry out cellular respiration, and this complex links the glycolysis metabolic pathway to the citric ...

  9. Cahill cycle - Wikipedia

    en.wikipedia.org/wiki/Cahill_cycle

    The alanine amino acid acts as a shuttle - it leaves the cell, entering the blood stream and traveling to hepatocytes in the liver, where essentially this entire process is reversed. Alanine undergoes a transamination reaction with free α-ketoglutarate to yield glutamate, which is then deaminated to form pyruvate and, ultimately, free ammonium ...