Search results
Results from the WOW.Com Content Network
Barium iodate, Ba(IO 3) 2, has a solubility product K sp = [Ba 2+][IO 3 −] 2 = 1.57 x 10 −9.Its solubility in pure water is 7.32 x 10 −4 M. However in a solution that is 0.0200 M in barium nitrate, Ba(NO 3) 2, the increase in the common ion barium leads to a decrease in iodate ion concentration.
When equilibrium is established and the solid has not all dissolved, the solution is said to be saturated. The concentration of the solute in a saturated solution is known as the solubility. Units of solubility may be molar (mol dm −3) or expressed as mass per unit volume, such as μg mL −1. Solubility is temperature dependent.
The analytical (total) concentration of a reactant R at the i th titration point is given by = + [] + where R 0 is the initial amount of R in the titration vessel, v 0 is the initial volume, [R] is the concentration of R in the burette and v i is the volume added. The burette concentration of a reactant not present in the burette is taken to be ...
The dissociation constant has molar units (M) and corresponds to the ligand concentration [] at which half of the proteins are occupied at equilibrium, [6] i.e., the concentration of ligand at which the concentration of protein with ligand bound [] equals the concentration of protein with no ligand bound []. The smaller the dissociation ...
The Hammett equation predicts the equilibrium constant or reaction rate of a reaction from a substituent constant and a reaction type constant. The Edwards equation relates the nucleophilic power to polarisability and basicity. The Marcus equation is an example of a quadratic free-energy relationship (QFER). [citation needed]
The concentration of the species LH is equal to the sum of the concentrations of the two micro-species with the same chemical formula, labelled L 1 H and L 2 H. The constant K 2 is for a reaction with these two micro-species as products, so that [LH] = [L 1 H] + [L 2 H] appears in the numerator, and it follows that this macro-constant is equal ...
For a reversible reaction, the equilibrium constant can be measured at a variety of temperatures. This data can be plotted on a graph with ln K eq on the y -axis and 1 / T on the x axis. The data should have a linear relationship, the equation for which can be found by fitting the data using the linear form of the Van 't Hoff equation
Calcium hydroxide is modestly soluble in water, as seen for many dihydroxides. Its solubility increases from 0.66 g/L at 100 °C to 1.89 g/L at 0 °C. [8] Its solubility product K sp of 5.02 × 10 −6 at 25 °C, [1] its dissociation in water is large enough that its solutions are basic according to the following dissolution reaction: