enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Contrastive Language-Image Pre-training - Wikipedia

    en.wikipedia.org/wiki/Contrastive_Language-Image...

    In text-to-image retrieval, users input descriptive text, and CLIP retrieves images with matching embeddings. In image-to-text retrieval, images are used to find related text content. CLIP’s ability to connect visual and textual data has found applications in multimedia search, content discovery, and recommendation systems. [31] [32]

  3. U-Net - Wikipedia

    en.wikipedia.org/wiki/U-Net

    Segmentation of a 512 × 512 image takes less than a second on a modern (2015) GPU using the U-Net architecture. [1] [3] [4] [5] The U-Net architecture has also been employed in diffusion models for iterative image denoising. [6] This technology underlies many modern image generation models, such as DALL-E, Midjourney, and Stable Diffusion.

  4. Text-to-image model - Wikipedia

    en.wikipedia.org/wiki/Text-to-image_model

    An image conditioned on the prompt an astronaut riding a horse, by Hiroshige, generated by Stable Diffusion 3.5, a large-scale text-to-image model first released in 2022. A text-to-image model is a machine learning model which takes an input natural language description and produces an image matching that description. Text-to-image models began ...

  5. Vision transformer - Wikipedia

    en.wikipedia.org/wiki/Vision_transformer

    Another encodes the quantized vectors back to image patches. The training objective attempts to make the reconstruction image (the output image) faithful to the input image. The discriminator (usually a convolutional network, but other networks are allowed) attempts to decide if an image is an original real image, or a reconstructed image by ...

  6. Minimum spanning tree-based segmentation - Wikipedia

    en.wikipedia.org/wiki/Minimum_spanning_tree...

    Image segmentation strives to partition a digital image into regions of pixels with similar properties, e.g. homogeneity. [1] The higher-level region representation simplifies image analysis tasks such as counting objects or detecting changes, because region attributes (e.g. average intensity or shape [2]) can be compared more readily than raw pixels.

  7. Insight Segmentation and Registration Toolkit - Wikipedia

    en.wikipedia.org/wiki/Insight_Segmentation_and...

    ITK is an open-source software toolkit for performing registration and segmentation. Segmentation is the process of identifying and classifying data found in a digitally sampled representation. Typically the sampled representation is an image acquired from such medical instrumentation as CT or MRI scanners. Registration is the task of aligning ...

  8. DALL-E - Wikipedia

    en.wikipedia.org/wiki/DALL-E

    DALL-E was revealed by OpenAI in a blog post on 5 January 2021, and uses a version of GPT-3 [5] modified to generate images.. On 6 April 2022, OpenAI announced DALL-E 2, a successor designed to generate more realistic images at higher resolutions that "can combine concepts, attributes, and styles". [6]

  9. Segmentation-based object categorization - Wikipedia

    en.wikipedia.org/wiki/Segmentation-based_object...

    Given an image D containing an instance of a known object category, e.g. cows, the OBJ CUT algorithm computes a segmentation of the object, that is, it infers a set of labels m. Let m be a set of binary labels, and let Θ {\displaystyle \Theta } be a shape parameter( Θ {\displaystyle \Theta } is a shape prior on the labels from a layered ...

  1. Related searches pretrained model for image segmentation in operating system notes iit chicago

    u net image segmentationcontrastive image pre training