Search results
Results from the WOW.Com Content Network
The equivalent circuit model (ECM) is a common lumped-element model for Lithium-ion battery cells. [ 1 ] [ 2 ] [ 3 ] The ECM simulates the terminal voltage dynamics of a Li-ion cell through an equivalent electrical network composed passive elements, such as resistors and capacitors , and a voltage generator .
LTspice is a SPICE-based analog electronic circuit simulator computer software, produced by semiconductor manufacturer Analog Devices (originally by Linear Technology). [2] It is the most widely distributed and used SPICE software in the industry. [ 6 ]
It is made up of one Li cation and a bistriflimide anion. Because of its very high solubility in water (> 21 m), LiTFSI has been used as lithium salt in water-in-salt electrolytes for aqueous lithium-ion batteries. [4] [5]
Simulation software allows for the modeling of circuit operation and is an invaluable analysis tool. Due to its highly accurate modeling capability, many colleges and universities use this type of software for the teaching of electronics technician and electronics engineering programs. Electronics simulation software engages its users by ...
They were developed by Oliver Heaviside who created the transmission line model, and are based on Maxwell's equations. Schematic representation of the elementary component of a transmission line. The transmission line model is an example of the distributed-element model. It represents the transmission line as an infinite series of two-port ...
For time-varying electromagnetic fields, the electromagnetic energy is typically viewed as waves propagating either through free space, in a transmission line, in a microstrip line, or through a waveguide. Dielectrics are often used in all of these environments to mechanically support electrical conductors and keep them at a fixed separation ...
Unlike the transmission line example, the need to apply the distributed-element model arises from the geometry of the setup, and not from any wave propagation considerations. [3] The model used here needs to be truly 3-dimensional (transmission line models are usually described by elements of a one-dimensional line).
Applying the transmission line model based on the telegrapher's equations as derived below, [1] [2] the general expression for the characteristic impedance of a transmission line is: = + + where R {\displaystyle R} is the resistance per unit length, considering the two conductors to be in series ,